Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, May 12, 2024

Tetrahydrofolate attenuates cognitive impairment after hemorrhagic stroke by promoting hippocampal neurogenesis via PTEN signaling

 Ask your competent? doctor WHOM EXACTLY is going to do the research on ischemic stroke!

Tetrahydrofolate attenuates cognitive impairment after hemorrhagic stroke by promoting hippocampal neurogenesis via PTEN signaling

Xuyang Zhang, Qingzhu Zhang, Qian Zhang, Haomiao Wang, Yi Yin, Huanhuan Li, Qianying Huang, Chao Guo, Jun Zhong, Tengyuan Zhou, Yujie Chen, Zhi Chen, Qiao Shan and Rong Hu

Abstract

Intracerebral hemorrhage (ICH), the most common subtype of hemorrhagic stroke, leads to cognitive impairment and imposes significant psychological burdens on patients. Hippocampal neurogenesis has been shown to play an essential role in cognitive function. Our previous study has shown that tetrahydrofolate (THF) promotes the proliferation of neural stem cells (NSCs). However, the effect of THF on cognition after ICH and the underlying mechanisms remain unclear. Here, we demonstrated that administration of THF could restore cognition after ICH. Using Nestin-GFP mice, we further revealed that THF enhanced the proliferation of hippocampal NSCs and neurogenesis after ICH. Mechanistically, we found that THF could prevent ICH-induced elevated level of PTEN and decreased expressions of phosphorylated AKT and mTOR. Furthermore, conditional deletion of PTEN in NSCs of hippocampus attenuated the inhibitory effect of ICH on the proliferation of NSCs and abnormal neurogenesis. Taken together, these results provide molecular insights into ICH-induced cognitive impairment and suggest translational clinical therapeutic strategy for hemorrhagic stroke.

Significance Statement Intracerebral hemorrhage (ICH) has been associated with cognitive dysfunction, yet its underlying mechanism remains elusive. Tetrahydrofolate (THF) has shown potential in promoting the proliferation of neural stem cells (NSCs), but its specific impact on cognitive recovery following ICH is still to be confirmed. Through the utilization of the Nestin-GFP genetic marker to track endogenous NSCs in mice, our study revealed that THF could regulate PTEN pathway to ameliorate cognitive impairment post-ICH by enhancing the proliferation of NSCs and sustaining neurogenesis. These findings contribute to valuable insights into the molecular mechanisms involved and suggest potential clinical applications for enhancing cognitive function recovery after ICH.

No comments:

Post a Comment