Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, December 16, 2011

Advanced Brain Scanning Technique Reveals the Potentially Long-Lasting Effects of Concussions

And we could use these advanced scanning techniques for showing exactly the damage that has occurred as a result of a stroke. And then we could scientifically map damage to visible deficits. And then we would have useable case studies. Its so simple even a stroke-addled person like myself can figure out how to get scientifically useable results.
I told you I can make any subject relate to stroke.
http://www.ninds.nih.gov/news_and_events/news_articles/rsfMRI_athlete_concussion.htm

Concussions used to be thought of as simple injuries. The end of symptoms, such as dizziness and headaches, usually meant a person had fully recovered. Nowhere was this view more prevalent than in sports, where common practice dictated that players could quickly return to the field once the dizziness ended. Now researchers are learning that sports-related concussions are very complicated injuries and that even the mildest ones may cause hidden, long-lasting problems.

“Symptom resolution is not necessarily injury resolution,” said Seymon Slobounov, Ph.D., the Director of the Psychophysiology of Movement Laboratory at Penn State University in University Park, PA.

Recently, Dr. Slobounov and his team reported the most conclusive evidence to date that an athlete’s brain may remain injured even after the symptoms of a recent concussion have disappeared and that these putative injuries are undetectable by commonly used neuropsychological tests. More importantly, their results suggest that monitoring an athlete’s brain activity with an advanced scanning technique, called rsfMRI, may help assess an athlete’s recovery from a concussion.

Concussion describes the brief loss of consciousness and memory, and dizziness that one may immediately suffer after an abrupt and violent head motion, such as a hit on the head. The traditional view is that once these symptoms have ended, an athlete is ready to return to regular play. However, there is growing concern that sending athletes back onto the field before their brains have fully healed may interfere with their recovery. The problem is that it is very hard to determine whether an athlete’s brain is injured after the symptoms of a concussion have disappeared.

In other words, “there is no gold standard for assessing recovery form a concussion,” Dr. Slobounov said.

Prior studies have used functional magnetic resonance imaging (fMRI) to examine whether there are long-lasting changes in brain activity after a concussion. However, the results have been inconsistent. This may be due to the fact that traditional fMRI measures changes in a small and localized fraction of overall brain activity that is only detectable when subjects are asked to perform a task and that may not be consistently affected by a concussion.

Dr. Slobounov and his colleagues used a brain imaging technique called resting state fMRI (rsfMRI) to compare the brain activity of athletes who were recovering from a concussion with that of control athletes who had no recent history of a concussion. As the name describes, rsfMRI is done while a person is at rest, which makes it possible to measure the brain's overall level of activity. The researchers theorized that rsfMRI would allow them to look for larger, more consistent changes in brain activity after a concussion.

The study involved athletes who had experienced a concussion within the previous 10 days but had no residual symptoms. They performed as well as control athletes on neuropsychological and mild exercise tests commonly used to determine whether an athlete has recovered from a concussion.

Nevertheless, rsfMRI brain scans revealed altered patterns of brain activity in the athletes who had suffered a concussion. Much of the activity representing the strength of connections between the left and right halves of the brain was lower, or weaker, than in the uninjured athletes. In contrast to the neuropsychological tests, these results suggested that the injured athletes had not fully healed ten days after the concussion.

When the researchers scanned the athletes’ brains a second time, immediately after administering mild exercise tests, they were surprised to find that the tests affected brain activity similarly in injured and uninjured athletes. The tests strengthened connections between the left and right halves of the brain in both groups. These results suggest that treating concussed athletes with certain mild exercises may need to be studied further.

The corpus callosum, the part of the brain that connects the left and right halves, is commonly affected by more severe traumatic brain injuries. Dr. Slobounov’s results strongly suggest that the corpus callosum may also be the primary site of injury after a concussion.

More importantly, these injuries may not heal until well after the symptoms have passed. These findings further suggest that rsfMRI may improve the assessment of concussed athletes.

Dr. Slobounov and his team received support from the National Institute of Neurological Disorders and Stroke.

- By Christopher G. Thomas, Ph.D.

Image caption: A comparison of brain scans taken from an uninjured and a recently concussed athlete reveals potentially harmful changes in brain activity caused by a concussion. The images were captured using a brain scanning technique called resting state functional magnetic resonance imaging (rsfMRI). Courtesy of Dr. Semyon Slobounov, Penn State University.

No comments:

Post a Comment