Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, December 11, 2011

Free Radical Trapping as a Therapeutic Approach to Neuroprotection in Stroke: Experimental and Clinical Studies with NXY-059 and Free Radical Scavenge

From 2005, I wonder why there is no record easily found about what happened to this line of research? I know why, survivors aren't in charge of disseminating stroke research. Silly me.
http://www.ingentaconnect.com/content/ben/cdtcnsnd/2005/00000004/00000002/art00002

Abstract:

There is substantial experimental evidence that free radicals are produced in the brain during ischemia, during reperfusion and during intracranial hemorrhage. Removal of pathologically produced free radicals is therefore a viable approach to neuroprotection. There is substantial experimental evidence that free radicals are produced in the brain during ischemia, during reperfusion and during intracranial hemorrhage. Removal of pathologically produced free radicals is therefore a viable approach to neuroprotection. Ebselen was a modestly effective neuroprotectant in a rat transient middle cerebral artery occlusion (MCAO) model when given before the start of ischemia, but not when the insult was severe. Data from the permanent MCAO model and an embolic stroke model suggested a bell shaped dose-response curve. The weak preclinical profile may explain the lack of success in clinical trials. Preclinical data on tirilazad in animal models of acute ischemic stroke are neither comprehensive nor consistent. There was little evidence of efficacy in permanent MCAO or when the drug was given several hours post-occlusion. This may explain the negative clinical trials as these did not target patients likely to reperfuse and treatment started several hours after stroke onset. While preclinical data on subarachnoid hemorrhage demonstrated an attenuation of vasospasm the clinical data were inconsistent. There is very limited published preclinical data on edaravone but it has been approved in Japan(since 2001) as a neuroprotectant for the treatment of stroke. Evidence is based on a single placebo controlled trial in a relatively small number of patients. The status of possible development of edaravone outside of Japan is not known. NXY-059 has been found to be a very effective agent in transient and permanent MCAO and thromboembolic models of acute ischemic stroke. Its preclinical development has been governed by adherence with the recommendations of the Stroke Therapy Academic Industry Roundtable (STAIR) group and is now being investigated in Phase III clinical trials using a therapeutic time window and plasma concentrations that are effective in rat and primate models of stroke.

No comments:

Post a Comment