Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, August 31, 2012

A Hybrid Controller with Chedoke-McMaster Stroke Assessment for Robot-Assisted Rehabilitation

See if your therapist has any way to use robotics or if they even know about this stuff.
http://www.sciencedirect.com/science/article/pii/S1877705812026227

Abstract

Amongst the major challenges in post-stroke rehabilitation are the repetitiveness nature of rehabilitation procedure, and the accessibility of therapists for long-term treatment. In manual rehabilitation procedure, the patient is subjected to repetitive mechanical movement of the affected limb by the therapist. In one of the techniques called active-assist exercise, the subject moves his affected limb along a specified trajectory with the therapist guiding the motion. The therapist gives some assistance to the subject to complete the course if deemed necessary and the procedure repeats. The significant advantages of using robots in assisting rehabilitation are its efficiency and it is fatigue free. The robots however need to be developed to have the capability of human therapist in providing the rehabilitation more naturally. In this paper, the work focuses on developing a new framework for the robot controller system. In particular, a low-level controller, which is in the form of force controller based on impedance control theory is discussed. The controller is capable of governing the active-assist exercise through autonomous guidance during the therapeutic procedure based on the Chedoke-McMaster stroke assessment method.

No comments:

Post a Comment