Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, June 17, 2018

Innovation in Systems of Care in Acute Phase of Ischemic Stroke. The Experience of the Catalan Stroke Programme

Well fuck, then write it up as a protocol and get it distributed and implemented around the world. Oh wait, that should be the responsibility of our fucking failures of stroke associations. Oh well, a few more people die from stroke with no protocols, they would have died eventually anyway.
https://www.frontiersin.org/articles/10.3389/fneur.2018.00427/full?
Rosa M. Vivanco-Hidalgo1*, Sònia Abilleira2, Mercè Salvat-Plana3, Aida Ribera4, Guillem Gallofré3 and Miquel Gallofré3
  • 1Stroke Programme, Catalan Stroke Foundation, Barcelona, Spain
  • 2Stroke Programme, Agency for Health Quality and Assessment of Catalonia, CIBER Epidemiología y Salud Pública, Barcelona, Spain
  • 3Stroke Programme, Barcelona, Spain
  • 4Cardiovascular Epidemiology Unit, Cardiology Department, Hospital Vall d'Hebron, Barcelona, Spain
Stroke, and mainly ischemic stroke, is the second cause of death and disability. To confront the huge burden of this disease, innovative stroke systems of care are mandatory. This requires the development of national stroke plans to offer the best treatment to all patients eligible for reperfusion therapies. Key elements for success include a high level of organization, close cooperation with emergency medical services for prehospital assessment, an understanding of stroke singularity, the development of preassessment tools, a high level of commitment of all stroke teams at Stroke Centres, the availability of a disease-specific registry, and local government involvement to establish stroke care as a priority. In this mini review, we discuss recent evidence concerning different aspects of stroke systems of care and describe the success of the Catalan Stroke Programme as an example of innovation. In Catalonia, reperfusion treatment rates have increased in recent years and currently are among the highest in Europe (17.3% overall, 14.3% for IVT, and 6% for EVT in 2016).

Introduction

Stroke—mainly ischemic stroke—is the second cause of death and disability worldwide (1). The stroke burden has increased across the globe in both men and women of all ages throughout the past two decades (2). However, population awareness of early symptoms, the accuracy of current brain imaging tests, and the development of acute therapies are contributing to reduce this trend (3). However, success will depend mainly on the structure of the healthcare system and it is uncertain whether systems in different countries are prepared to deal with this huge burden. Therefore, innovation in stroke systems of care is mandatory to transform them and prepare them to confront this health challenge.

Innovating in Systems of Acute Stroke Care. Organization and Cooperation to Deliver More Treatment, More Rapidly

The natural history of ischaemic stroke has changed dramatically since the 1990s. The beginning of the Intravenous Thrombolysis (IVT) Era in the late 90s (4) and recent approval of endovascular therapy (EVT) (5), the demonstration of improved stroke outcomes with stroke unit care, and the benefits of implementing organized stroke systems of care have all contributed to reduce mortality and disability in patients with acute ischaemic stroke (AIS) (3, 6).
The proportion of patients treated has increased in recent years in high-income countries, mainly in comprehensive stroke centers (CSCs), where EVT is provided (7). The effectiveness of reperfusion therapies is highly time-dependent: The sooner the patient arrives to the hospital after symptoms onset, the better. Once in hospital, highly organized workflows are of utmost importance to achieve door-to-needle times in IVT and door-to-groin-puncture times in EVT. A set of effective strategies has been successfully implemented in hospitals to reduce these critical time delays, especially pre-notification of arrival by Emergency Medical Services (EMS), direct transfer to the radiology service for brain CT scan or direct alteplase administration in the scanner (8, 9).
The eligibility of patients with AIS for reperfusion therapies is evolving as new evidence is published. Partially dependent patients, otherwise excluded from IVT trials, might benefit from thrombolysis (10) and certain patients with unknown time of stroke onset, precluded from seminal EVT trials, have shown improved outcomes after EVT (11, 12). Therefore, the overall proportion of AIS patients who might benefit from reperfusion therapies is rising and changing inclusion criteria generate uncertainty about how many more are potentially eligible.
The capacity to increase the proportion of patients treated is related to the structure of the system of care. Current evidence shows that patients who require interhospital transfer for EVT achieve reperfusion between 109 and 120 min later than those directly transported to CSCs, and have a lower absolute probability of independent outcome (1315). These data should prompt a rethinking of systems of stroke care at national and regional levels in order to improve the “hub-and-spoke” transfer networks. This form of medical transport optimization organizes traffic routes as a series of 'spokes' that connect outlying points to a central 'hub.' In acute care for stroke, the Hubs are CSCs with great expertise that concentrate a huge volume of procedures and are connected with centers having a lower level of expertise and smaller volume of procedures.

Understanding the Singularity of Stroke to Improve Care

Management of AIS has taken lessons from acute myocardial infarction management; however, unlike heart attack, in most cases acute stroke leaves patients unable to speak and to alert EMS by themselves. Population campaigns are crucial to raise awareness about stroke symptoms and how to detect them. In addition, EMS technicians must be specifically trained to detect stroke, activate the stroke code and pre-notify arrival to the nearest hospital with proper treatment capabilities.
The possibility of diagnostic testing in the ambulance to inform hospital treatment is another huge difference between heart attack and stroke. The recent development of CT-equipped mobile stroke units is considered an important advancement. This approach is safe and feasible, has increased IVT rates, and achieved significantly shorter time-to-treatment compared to conventional care in the areas tested, mainly in Germany (16). However, a recent study found no significant difference between the proportion of patients with a modified Rankin Scale score of 1 or less who received this type of care compared with conventional care (17). Therefore, due to its high cost without clear long-term benefit, we can conclude that an efficient technology for prehospital diagnosis of stroke that can be easily implemented is lacking.

Organizing to Achieve Better Results. Organization and Cooperation at Different Levels of Care

Once the stroke code is activated, where do we transfer the patient? Given the beneficial results of bridging therapy (IVT plus EVT) in patients with large vessel occlusion (LVO) (5), it seems clear that the demand for neurointervention in coming years will grow in line with increasing numbers of EVT-capable centers. Nonetheless, it is difficult to justify the establishment of EVT-capable centers in remote areas with low population density.
Therefore, a crucial question is how to define the best transfer network for AIS patients located in remote and distant areas. The drip-and-ship model, which takes the patient to the nearest stroke center, prioritizes the initial diagnostic workup and IVT. In this model, the identification of an LVO patient is followed by interhospital transfer to a CSC. Another model is direct transfer to a CSC, thus bypassing the Primary Stroke Centre (PSC), known as the mothership model. A recent study in Canada used conditional probability modeling to find an answer, testing different transportation options to identify the better modeled outcome in specific regions. The authors concluded that a drip-and-ship model is appropriate if the treatment in a PSC is delivered in less than 30 min and the patient is then transferred to a capable CSC (18). In Catalonia, the ongoing RACECAT trial (Direct Transfer to an Endovascular Centre Compared to Transfer to the Closest Stroke Centre in Acute Stroke Patients with Suspected Large Vessel Occlusion; NCT02795962) is expected to provide answers to important questions of logistics and increase the efficient delivery of treatments and the number of acute stroke patients that have access to them.
There is still room for network innovation. In remote areas with no access to stroke experts, a possible and feasible solution is TeleStroke Centres (TSC). Using videoconferencing and image-sharing technology, stroke specialists from a CSC can examine patients at remote hospitals to help with diagnosis and recommend a plan of care.
Results from a third model, called trip-and-treat, have been recently published. This urban interhospital service delivery model consists of a shared mobile interventional stroke team that travels to PSCs in New York City to provide on-site interventional capability. The authors concluded that, in their area of reference, the trip-and-treat model had shorter time-to-treatment for EVT, compared with drip-and-ship, offering a valid alternative to current interhospital stroke transfers in urban environments (19).

Prehospital Assessment

Theoretically, the benefits of a primary transfer to a CSC would only apply to patients with LVO and may unnecessarily delay treatment in all others. Therefore, the predictive power of initial screening tools to identify patients with suspected LVO becomes of paramount importance. Various scoring systems have been developed to detect potential candidates to EVT. These scales must meet key criteria: rapid and simple to use, applicable to an unselected population with a suspected stroke, high interrater reliability, and high accuracy to avoid underdiagnosis (low false-negative rate; i.e., 1-sensitivity) and overdiagnosis that could overload the CSC (low false positive rate, i.e., 1-specificity). Finally, the scale must be validated and proven to improve patient outcomes (20). A recent observational study compared 13 validated prehospital scales and concluded that published cutoff scores to predict LVO in clinical settings were associated with high accuracy but also yielded a high false-negative rate (21).
Among them, one that showed high accuracy and a comparatively lower false-negative rate was the RACE scale. This scale is a simplification of the NIHSS scale, using only those items with a higher ability to predict the presence of LVO. The RACE scale evaluates 5 items: facial palsy, brachial paresis, crural paresis, oculocephalic deviation and aphasia/agnosia. Scores range from 0 to 9. A score > 4 allows the suspicion of a LVO with a sensitivity of 85% and specificity of 69% (22). The RACE scale was designed and validated in Catalonia with a prospective study that included 357 patients in 2011–2013. Therefore, in optimizing stroke systems of care, the prehospital assessment is a key factor to take into account.

The Stroke Code System of Catalonia as an Example

Catalonia has a population of 7.5 M and an organized and highly territorialized stroke system of care administered by the Stroke Programme, an organization created in 2004 by the Catalan Health Department. In 2006, the Stroke Programme implemented the Stroke Code System in 2006 to cover all the territory (23) (Figure 1). Current criteria for Stroke Code activation are clinical suspicion of acute stroke, less than 8 h from symptom onset (or unknown), and previous functional independence (Rankin 0–2) with no age limit (24, 25). Upon Stroke Code activation, the EMS coordinates patient transport to the nearest Stroke Centre (SC) according to predefined pathways. After initial recognition of stroke symptoms, the destination SC is pre-alerted by the EMS. The Stroke Code can be activated directly from EMS upon identification of a stroke patient in the field (60% of all Stroke Code activations) or at the Emergency Department of any hospital when patients arrive at the hospital by their own means. In recent years, our network of acute hospitals that are active in the stroke code system has grown to include 26 centers: (1) Twelve TSCs with capacity to deliver IVT via tele-consultation with a vascular neurologist who covers all tele-consultations from the 7 TSCs in the outer metropolitan area of Barcelona; the remaining 5 TSCs are located in the Catalan provinces and are usually covered by the neurologist on call at the nearest provincial PSC, with the central on-call service acting as a backup. (2) Eight PSCs with capacity to deliver IVT and admit patients to a certified Stroke Unit. (3) Six EVT-capable centers or CSCs, all of them located in the inner metropolitan area of Barcelona.

No comments:

Post a Comment