Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, July 10, 2020

Pathophysiology of Intracranial Aneurysms

With this knowledge, WHAT ARE THE NEXT STEPS TO PREVENT THESE ANEURYSMS FROM BURSTING? No next steps, useless research.

Pathophysiology of Intracranial Aneurysms

COX-2 Expression, Iron Deposition in Aneurysm Wall, and Correlation With Magnetic Resonance Imaging
Originally publishedhttps://doi.org/10.1161/STROKEAHA.120.030590Stroke. ;0

Background and Purpose:

The pathophysiology of development, growth, and rupture of intracranial aneurysms (IAs) is only partly understood. Cyclooxygenase 2 (COX-2) converts arachidonic acid to prostaglandin H2, which, in turn, is isomerized to prostaglandin E2. In the human body, COX-2 plays an essential role in inflammatory pathways. This explorative study aimed to investigate COX-2 expression in the wall of IAs and its correlation to image features in clinical (1.0T, 1.5T, and 3.0T) magnetic resonance imaging (MRI) and ultra-high-field 7T MRI.

Methods:

The study group comprised 40 patients with partly thrombosed saccular IAs. The cohort included 17 ruptured- and 24 unruptured IAs, which had all been treated microsurgically. Formaldehyde-fixed paraffin-embedded samples were immunohistochemically stained with a monoclonal antibody against COX-2 (Dako, Santa Clara, CA; Clone: CX-294). We correlated Perls Prussian blue staining, MRI, and clinical data with immunohistochemistry, analyzed using the Trainable Weka Segmentation algorithm.

Results:

Aneurysm dome size ranged between 2 and 67 mm. The proportion of COX-2 positive cells ranged between 3.54% to 85.09%. An upregulated COX-2 expression correlated with increasing IA dome size (P=0.047). Furthermore, there was a tendency of higher COX-2 expression in most ruptured IAs (P=0.064). At all field strengths, MRI shows wall hypointensities due to iron deposition correlating with COX-2 expression (P=0.022).

Conclusions:

Iron deposition and COX-2 expression in IAs walls correlate with signal hypointensity in MRI, which might, therefore, serve as a biomarker for IA instability. Furthermore, as COX-2 was also expressed in small unruptured IAs, it could be a potential target for specific medical treatment.

Footnotes

For Sources of Funding and Disclosures, see page xxx.
Correspondence to: Jan Rodemerk, Department of Neurosurgery, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany. Email

No comments:

Post a Comment