Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, November 24, 2020

Effectiveness of an Innovative Cognitive Treatment and Telerehabilitation on Subjects With Mild Cognitive Impairment: A Multicenter, Randomized, Active-Controlled Study

 Since you lost 5 cognitive years from the stroke maybe you want your doctor to have this available for you. Up to you if you want to enforce competence in your stroke hospital. It might help your children and grandchildren when they have strokes.

Effectiveness of an Innovative Cognitive Treatment and Telerehabilitation on Subjects With Mild Cognitive Impairment: A Multicenter, Randomized, Active-Controlled Study

Rosa Manenti1*, Elena Gobbi1, Francesca Baglio2, Ambra Macis3, Clarissa Ferrari3, Ilaria Pagnoni1, Federica Rossetto2, Sonia Di Tella2, Federica Alemanno4, Vincenzo Cimino5, Giuliano Binetti6, Sandro Iannaccone4, Placido Bramanti5, Stefano F. Cappa7,8 and Maria Cotelli1*
  • 1Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
  • 2IRCCS, Fondazione Don Carlo Gnocchi – ONLUS, Milan, Italy
  • 3Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
  • 4Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Hospital and Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
  • 5IRCCS Centro Neurolesi “Bonino Pulejo,” Messina, Italy
  • 6MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
  • 7NEtS, Scuola Universitaria Superiore IUSS-Pavia, Pavia, Italy
  • 8IRCCS Fondazione Mondino, Pavia, Italy

Background: In recent years, the potential usefulness of cognitive training procedures in normal aging and mild cognitive impairment (MCI) have received increased attention.

Objective: The main aim of this study was to evaluate the efficacy of the face-to-face cognitive virtual reality rehabilitation system (VRRS) and to compare it to that of face-to-face cognitive treatment as usual for individuals with MCI. Moreover, we assessed the possibility of prolonging the effects of treatment with a telerehabilitation system.

Methods: A total of 49 subjects with MCI were assigned to 1 of 3 study groups in a randomized controlled trial design: (a) those who received face-to-face cognitive VRRS (12 sessions of individualized cognitive rehabilitation over 4 weeks) followed by telerehabilitation (36 sessions of home-based cognitive VRRS training, three sessions for week); (b) those who received face-to-face cognitive VRRS followed by at-home unstructured cognitive stimulation (36 sessions of home-based unstructured cognitive stimulation, three sessions for week); and (c) those who received face-to-face cognitive treatment as usual (12 sessions of face-to-face cognitive treatment as usual).

Results: An improvement in memory, language and visuo-constructional abilities was observed after the end of face-to-face VRRS treatment compared to face-to-face treatment as usual. The application of home-based cognitive VRRS telerehabilitation seems to induce more maintenance of the obtained gains than home-based unstructured stimulation.

Discussion: The present study provides preliminary evidence in support of individualized VRRS treatment and telerehabilitation delivery for cognitive rehabilitation and should pave the way for future studies aiming at identifying optimal cognitive treatment protocols in subjects with MCI.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03486704.

Introduction

In recent years, there has been growing interest in the use of telerehabilitation methods in patients with neurodegenerative diseases (Cherney and van Vuuren, 2012; Cotelli et al., 2019).

Given the limited effectiveness of pharmacological treatments, there is a critical need to develop novel interventions aimed at preventing or delaying the onset of Alzheimer’s disease (AD), and mild cognitive impairment (MCI) might represent a potential target for intervention trials (Kidd, 2008; Hong et al., 2015; Janoutova et al., 2015).

Traditional cognitive training involves intensive in-person sessions that may not prove to be feasible and cost-effective in the case of large-scale implementation. The average lifespan in the world almost doubled during the 20th century and has resulted in a large number of people living to old ages, causing an increased risk of developing age-related diseases, disability and dementia (Fratiglioni et al., 1999; Brown, 2015). In the coming years, the growing demand and the need to contain the costs of health care will dictate the need to reorganize the services dedicated to people at risk of developing cognitive impairment by taking advantage of technological developments (Bharucha et al., 2009; Astell, 2019; Moyle, 2019). Telerehabilitation via information and communication technologies (Brennan et al., 2011; Realdon et al., 2016; Pitt et al., 2019) represents an innovative approach to overcome the obstacles associated with face-to-face intervention. Telerehabilitation technologies allow to provide services remotely in patients’ homes or other environments, allowing access to health care to patients living in rural settings or with mobility difficulties (Brennan et al., 2002, 2009, 2011; Forducey et al., 2003; Mashima and Doarn, 2008; Zampolini et al., 2008; Hailey et al., 2011; Peretti et al., 2017). In addition, the telerehabilitation modality offers the advantage of providing rehabilitation within the natural environment of the patient’s home, making the treatment more realistic and possibly more generalizable to the person’s daily life (McCue et al., 2010).

Recent studies have shown that the application of telerehabilitation methodology in individuals with physical impairments, post-stroke participants and patients with neurodegenerative diseases leads to clinical improvements that are generally equal to those induced by conventional face-to-face rehabilitation programs (Brennan et al., 2002; Rosen, 2004; Poon et al., 2005; Mashima and Doarn, 2008; Kairy et al., 2009; Cherney and van Vuuren, 2012; Jelcic et al., 2014; Antonietti et al., 2016; Vermeij et al., 2016; Burton and O’Connell, 2018; Isernia et al., 2019).

A recent systematic review showed the efficacy of telerehabilitation on cognitive abilities in individuals with MCI and in patients with neurodegenerative diseases associated with cognitive impairment (Cotelli et al., 2019). MCI is a condition associated with risk of progression to dementia, and represents a well-suited target for prevention studies (Petersen et al., 1999, 2014; Petersen, 2004; Livingston et al., 2017). However, these treatments are delivered in several ways and there is not a clinical consensus about content-design of telerehabilitation. A fixed schedule approach has proved to be effective in the treatment of elderly people with high risk of conversion in dementia resulting in a significant improvement in global cognitive functioning, memory and processing speed (Lampit et al., 2014). In other studies, participants were given the opportunity to choose free among the activities available in each session of training (Medalia and Freilich, 2008; Gooding et al., 2016). A third alternative consisted in the user-centered approach, which customized the choice of rehabilitative contents based on the performance obtained by the individual to the set up tests implemented in the software at the beginning of the rehabilitation path (Solana et al., 2015; Vance et al., 2018). So far, the majority of studies are feasibility or pilot studies with small-medium sample size and are very heterogeneous in terms of intensity and duration of treatment (Burdea et al., 2015; Espay et al., 2016; Dodakian et al., 2017). For this reason, in the light of this ongoing deep transformation of health care, it is of great relevance the effort to harmonize intervention protocols and randomized controlled trials (RCTs) are strongly needed to demonstrate the effectiveness of these home-based technology-enhanced treatment protocols with respect to the gold-standard, named the usual face-to-face care (Linden et al., 2016; Fetta et al., 2017; Topol, 2019).

The main aim of the current study was to evaluate the efficacy of the cognitive face-to-face virtual reality rehabilitation system (VRRS) and to compare it to that of face-to-face cognitive treatment as usual for subjects with MCI. We hypothesized that the face-to-face VRRS system would ameliorate memory and attentional abilities more than treatment as usual in subjects with MCI.

Moreover, we tested the hypothesis that the implementation of home-based treatment through the cognitive VRRS system could induce long-term benefits, prolonging the beneficial effects of face-to-face.

 

No comments:

Post a Comment