Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, August 10, 2011

How a stinky chemical offers neuroprotection for a seizing brain.


http://www.nature.com/neuro/journal/v14/n4/abs/nn.2777.html

Polyamines are endogenous molecules involved in cell damage following neurological insults, although it is unclear whether polyamines reduce or exacerbate this damage. We used a developmental seizure model in which we exposed Xenopus laevis tadpoles to pentylenetetrazole (PTZ), a known convulsant. We found that, after an initial PTZ exposure, seizure onset times were delayed in response to a second PTZ exposure 4 h later. This protective effect was a result of activity-dependent increases in synthesis of putrescine, the simplest polyamine. Unlike more complex polyamines that directly modulate ion channels, putrescine exerted its effect by altering the balance of excitation to inhibition. Tectal neuron recordings, 4 h after the initial seizure, revealed an elevated frequency of GABAergic spontaneous inhibitory postsynaptic currents. Our data suggest that this effect is mediated by an atypical pathway that converts putrescine into GABA, which then activates presynaptic GABAB receptors. Our data suggest that polyamines have a previously unknown neuroprotective role in the developing brain.

Figures at a glance

left

No comments:

Post a Comment