Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, January 8, 2013

Electrochemical Failure of the Brain Cortex Is More Deleterious When it Is Accompanied by Low Perfusion

See if your doctor has the same understanding of depolarization and commitment point
http://stroke.ahajournals.org/content/early/2013/01/03/STROKEAHA.112.660589.short

Abstract

Background and Purpose—Clinical and experimental evidence suggests that spreading depolarization facilitates neuronal injury when its duration exceeds a certain time point, termed commitment point. We here investigated whether this commitment point is shifted to an earlier period, when spreading depolarization is accompanied by a perfusion deficit.
Methods—Electrophysiological and cerebral blood flow changes were studied in a rat cranial window model followed by histological and immunohistochemical analyses of cortical damage.
Results—In group 1, brain topical application of artificial cerebrospinal fluid (ACSF) with high K+ concentration ([K+]ACSF) for 1 hour allowed us to induce a depolarizing event of fixed duration with cerebral blood flow fluctuations around the baseline (short-lasting initial hypoperfusions followed by hyperemia). In group 2, coapplication of the NO-scavenger hemoglobin ([Hb]ACSF) with high [K+]ACSF caused a depolarizing event of similar duration, to which a severe perfusion deficit was coupled (=spreading ischemia). In group 3, intravenous coadministration of the L-type calcium channel antagonist nimodipine with brain topical application of high [K+]ACSF/[Hb]ACSF caused spreading ischemia to revert to spreading hyperemia. Whereas scattered neuronal injury occurred in the superficial cortical layers in the window areas of groups 1 and 3, necrosis of all layers with partial loss of the tissue texture and microglial activation were observed in group 2.
Conclusions—The results suggest that electrochemical failure of the cortex is more deleterious when it is accompanied by low perfusion. Thus, the commitment point of the cortex is not a universal value but depends on additional factors, such as the level of perfusion.

No comments:

Post a Comment