Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, January 22, 2013

Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton

Ask your doctor to compare this to the various AFO options out there.
http://www.jneuroengrehab.com/content/10/1/3/abstract

Abstract (provisional)

Background

Robot-aided gait training is an emerging clinical tool for gait rehabilitation of neurological patients. This paper deals with a novel method of offering gait assistance, using an impedance controlled exoskeleton (LOPES). This method is based on a recent finding that, in the control of walking, different modules can be discerned that are associated with different subtasks. In this study, a Virtual Model Controller (VMC) for supporting one of these subtasks, namely the foot clearance, is presented and evaluated.

Methods

The developed VMC provides virtual support at the ankle to increase foot clearance. Therefore, we first developed a new method to derive reference trajectories of the ankle position. These trajectories consisted of splines between key events, which are dependent on walking speed and body height. The VMC was evaluated in twelve healthy subjects and six chronic stroke survivors. The impedance values of the support were altered between trials to investigate whether the controller allowed gradual and selective support. Additionally, an adaptive algorithm was tested, that automatically shaped the amount of support to the subjects' needs. Catch trials were introduced to determine whether the subjects tended to rely on the support. We also assessed the additional value of providing visual feedback.

Results

With the VMC, the step height could be selectively and gradually influenced. The adaptive algorithm clearly shaped the support level to the specific needs of every stroke survivor. The provided support did not result in reliance on the support for both groups. All healthy subjects and most patients were able to utilize the visual feedback to increase their active participation.

Conclusion

The presented approach can provide selective control on one of the essential subtasks of walking. This module is the first in a set of modules to control all subtasks. This will enable the therapist to focus the support on the subtasks that are impaired, and leave the other subtasks up to the patient, encouraging him to actively participate in the training. Additionally, the speed-dependent reference patterns will provide the therapist with the tools to easily adapt the treadmill speed to the capabilities and progress of the patient.

The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production.

No comments:

Post a Comment