Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, July 15, 2021

Brain implant turns thoughts into words to help paralyzed man 'speak' again

The text under the picture should have been the patients vocal cord control.

Brain implant turns thoughts into words to help paralyzed man 'speak' again

The UCSF research taps a brain-computer interface to turn attempted speech into typing. It's funded by Facebook, which is shifting its own focus on neural tech.


July 14, 2021 7:59 p.m. PT

Facebook's work in neural input technology for AR and VR looks to be moving in a more wrist-based direction, but the company continues to invest in research on implanted brain-computer interfaces. The latest phase of a years-long Facebook-funded study from UCSF, called Project Steno, translates attempts at conversation from a speech-impaired paralyzed patient into words on a screen.

"This is the first time someone just naturally trying to say words could be decoded into words just from brain activity," said Dr. David Moses, lead author of a study published Wednesday in the New England Journal of Medicine. "Hopefully, this is the proof of principle for direct speech control of a communication device, using intended attempted speech as the control signal by someone who cannot speak, who is paralyzed."

Moses clarified that the work will aim to continue beyond Facebook's funding phase and that the research still has a lot more work ahead. Right now it's still unclear how much of the speech recognition comes from recorded patterns of brain activity, or vocal utterances, or a combination of both. 

Moses is quick to clarify that the study, like other BCI work, isn't mind reading: it relies on sensing brain activity that happens specifically when attempting to engage in a certain behavior, like speaking. Moses also says the UCSF team's work doesn't yet translate to non-invasive neural interfaces. Elon Musk's Neuralink promises wireless transmission data from brain-implanted electrodes for future research and assistive uses, but so far that tech's only been demonstrated on a monkey.

frlr-head-mounted-bci-research-prototype

Facebook Reality Labs' BCI head-worn device prototype, which didn't have implanted electrodes, is going open-source.

Facebook

Meanwhile, Facebook Reality Labs Research has shifted away from head-worn brain-computer interfaces for future VR/AR headsets, pivoting for the near future to focusing on wrist-worn devices based on the tech acquired from CTRL-Labs. Facebook Reality Labs had its own non-invasive prototype head-worn research headsets for studying brain activity, and the company has announced it plans to make these available for open-source research projects as it stops focus on head-mounted neural hardware. (UCSF receiving funding from Facebook but no hardware.) 

"Aspects of the optical head mounted work will be applicable to our EMG research at the wrist. We will continue to use optical BCI as a research tool to build better wrist-based sensor models and algorithms. While we will continue to leverage these prototypes in our research, we are no longer developing a head mounted optical BCI device to sense speech production. That's one reason why we will be sharing our head-mounted hardware prototypes with other researchers, who can apply our innovation to other use cases," a Facebook representative confirmed via email.

Consumer-targeted neural input technology is still in its infancy, however. While consumer devices using noninvasive head or wrist-worn sensors exist, they're far less accurate than implanted electrodes right now.

 

 

No comments:

Post a Comment