Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, November 20, 2021

Robotics for rehabilitation of hand movement in stroke survivors

 Still don't know what end-effector is or how to explain to my therapist if I may want one.

Robotics for rehabilitation of hand movement in stroke survivors

First Published April 25, 2019 Research Article 

This article aims to give an overall review of research status in hand rehabilitation robotic technology, evaluating a number of devices. The main scope is to explore the current state of art to help and support designers and clinicians make better choices among varied devices and components. The review also focuses on both mechanical design, usability and training paradigms since these parts are interconnected for an effective hand recovery. In order to study the rehabilitation robotic technology status, the devices have been divided in two categories: end-effector robots and exoskeleton devices. The end-effector robots are more flexible than exoskeleton devices in fitting the different size of hands, reducing the setup time and increasing the usability for new patients. They suffer from the control of distal joints and haptic aspects of object manipulation. In this way, exoskeleton devices may represent a new opportunity. Nevertheless their design is complex and a deep investigation of hand biomechanics and physical human–robot interaction is required. The main hand exoskeletons have been developed in the last decade and the results are promising demonstrated by the growth of the commercialized devices. Finally, a discussion on the complexity to define which design is better and more effective than the other one is summarized for future investigations.

Over the past years, rehabilitation engineering has played a crucial role in improving the hand and finger function after stroke. The applications of robotics and mechatronic devices have rapidly expanded from the industrial environment to human assistance in rehabilitation and functional improvements. Rehabilitation engineering has increased the quality lives of individuals with disabilities, offering dedicated training that performs better than conventional methods.

In this way, there are many challenges and opportunities to integrate engineering concepts into hand rehabilitation, and increasing population wellbeing and wealth as well as reducing healthcare costs. This motivates researchers to study, design, and develop novel rehabilitative and assistive technologies and devices to help people to motor functions. Specifically, the current challenge is to transfer the research results and new knowledge to stakeholders creating a general awareness of the importance of rehabilitation engineering.

This review aims to present and discuss the main robotic technologies for hand recovery rehabilitation in stroke survivors, evaluating and comparing previous and current works and researches. This study explores the current state of art to help and support designers and clinicians make better choices among varied devices and components. The review also focuses on both mechanical design (e.g. concept), usability (e.g. setup, lightness, portability) and training paradigms (e.g. hand, hand/wrist or entire arm) since these parts are interconnected for an effective hand recovery. An overview of the main advantages and drawbacks in applying robotics to hand motor impairments is provided in order to give a general view of the relationship between hand rehabilitation devices, rehabilitation theories and results. The challenge is to restore the hand movements such as opening, closing, grasping and releasing movements. Second, a discussion on the application and new challenges of rehabilitation robotic devices is summarized for future investigations. In particular, the main challenges are to develop safe devices with less complex designs, increasing potential for portability and efficacy. In fact, future development for patient treatment should include the device portability to increase the potential applications. The preliminary results have highlighted the robot-assisted therapy currently works hand in hand rather than a replacement of traditional therapy. Therapies and rehabilitation strategies should be not only more effective but also more cost-efficient.

Stroke is one of the leading causes of long-term disability, affecting approximately 14% of world’s population.1,2 33% of survivors reports very limited or no functional use of the upper limb.3 Rehabilitation activities based on repeated exercises have been identified suitable in recovering some degree of motion, in particular, a simple flexion and extension of fingers has demonstrated improvements in hand functionality.4,5 In this way, medical devices and robot-assisted strategies may provide a number of advantages guaranteeing the range of motion (ROM) and avoiding inappropriate movements. Nevertheless, only a limited part of the proposed devices by the literature has been clinically tested, highlighting as the design complexity and development costs may negatively impact the system implementation. The previous and current robots and devices are often too complex to be used by patients limiting any testing on the real users.

Note that the hand functional improvement may be the result of a set of compensatory strategies based on an initial support assisted by the physiotherapist. Usually, these approaches may be suggested during the first months after stroke, when the impairment reduction may be preferred to extensive functional training. In this phase of impairment, the patients show a loss of control and a decreased tactile sensation and proprioception, reducing the physical independence and social integration. The patient’s motivation associated with verbal encouragement may significantly impact the therapy efficacy.

Over the last decades, a set of studies has evaluated the influence of the robot-assisted therapies on arm motor improvement and impairment reduction using randomized clinical controlled trials.612 The obtained results have not shown a complete consensus; nevertheless, the therapy assisted by robotics seems to obtain results beyond what is done by conventional methods.1317 In particular, researchers have been slow to investigate the hand function due to the complexity of this limb.11,12,1820

In any case, a number of studies observed that the rehabilitation training can improve the hand motor in terms of pull, push, and grip strengths, confirming that robotic training is at least as effective as conventional training.13,2124 A significant part of the obtained outcomes have been also proved by Fugl-Meyer Assessment (FMA) and Functional Independence Measure (FIM) tests, performed after the robot treatment.2527

Despite these promising results, the literature review shows also researches that did not observed significant difference between conventional and robotic training groups, highlighting as the conventional therapies are more effective in decreasing levels of impairment and disability.2,8,28,29 Mazzoleni et al.29 and Colombo et al.30 have underlined that there are other significant factors that may impact the efficacy of the training outcome, such as recovery stage, intensity, or duration of the rehabilitation therapy. This point needs to be considered to evaluate and compare different therapy treatments. In the light of these considerations, there are not evident conclusions that sustain the robot-therapy efficacy, suggesting further investigations.31,32

 More at link.

No comments:

Post a Comment