You'll have to ask your doctor and hospital what they have done to test this in a stroke population. No testing, you don't have a functioning stroke hospital. It's just zombies running around doing the status quo and completely failing at getting survivors recovered(10% full recovery is complete failure). Don't like that comment, prove me wrong. Fall prevention is a secondary problem which you wouldn't have to address if you correctly solved the primary problem of 100% recovery. Solve the correct thing, you're just wasting time and money otherwise. Does anyone in the stroke world actually think?
Comparison between the effects of exergame intervention and traditional physical training on improving balance and fall prevention in healthy older adults: a systematic review and meta-analysis
Journal of NeuroEngineering and Rehabilitation volume 18, Article number: 164 (2021)
Abstract
Objective
Physical training (PT, e.g., Tai Chi and strength training) has been demonstrated to improve balance control and prevent falls. Recently, exergame intervention (EI) has emerged to prevent falls by enhancing both physical and cognitive functions in older adults. Therefore, we aim to quantitatively assess and compare the effects of PT and EI on the performance of balance control and fall prevention in healthy older adults via meta-analysis.
Methods
A search strategy based on the PICOS principle was used to find the publication in the databases of PubMed, EMBASE, Web of Science, Cochrane Library, and MEDLINE. The quality and risk of bias in the studies were independently assessed by two researchers.
Results
Twenty studies consisting of 845 participants were included. Results suggested that as compared to PT, EI induced greater improvement in postural control (sway path length, SMD = − 0.66, 95% CI − 0.91 to − 0.41, P < 0.001, I2 = 0%; sway speed, SMD = − 0.49, 95% CI − 0.71 to − 0.27, P < 0.001, I2 = 42%) and dynamic balance (SMD = − 0.19, 95% CI − 0.35 to − 0.03, P = 0.02, I2 = 0%) in healthy older adults. The EI with 90–119 min/week for more than 8-week significantly reduced falls. Subgroup analyses revealed that exergames, which were designed by the two principles of repeatedly performing diversified tasks and gradually increase the difficulty of the task, induced significant effects in improving balance control and falls prevention respectively (P = 0.03, P = 0.009). In addition, intervention that combines EI and PT induced significant improvement in postural control (P = 0.003).
Conclusion
The exergame intervention, especially the combination of EI and PT, is a promising strategy to improve balance control and reduce falls in healthy older adults. Future studies with rigorous design, larger sample size, and follow-up assessments are needed to further assess the effectiveness of diverse exergame interventions in fall prevention and to quantify the “dose-effect” relationship, as well as the carry-over effect of such intervention, which will ultimately help optimize the rehabilitative strategies to improve balance control and prevent falls.
Introduction
Falls are a global public health problem in the older adult population, oftentimes leading to mobility limitation, diminished quality of life, as well as increased mortality and morbidity [1,2,3,4]. One of the main factors leading to falls is the loss of balance when standing and walking [5,6,7]. Therefore, strategies designed to improve standing and walking performance will ultimately help reduce fall risk in older adults.
Numerous efforts have been made to improve the capacity of maintaining balance when standing and walking. Studies have shown that traditional physical training (PT), such as balance and strength training, as well as Tai Chi, can help reduce fall risks by improving the standing and walking performance [8,9,10]. For example, El-Khoury et al. [8] found that a 2-year balance intervention could reduce the incidence of injurious falls in older women compared to the control, and the participants showed improved balance as measured by faster time to complete the timed-up-and-go test and walk 6-m test, and longer time in single-leg stance test. However, studies also suggested that the traditional PT is time-consuming, and the training procedure is not always enjoyable for older adults, oftentimes resulting in low compliance and high drop-out rate of participants [11, 12].
Recently, exergame intervention (EI) has been implemented as a novel rehabilitative strategy for those who have cognitive-motor impairments (e.g., Parkinson and stroke) and demonstrated the great potential of enhancing balance control [13,14,15]. Interactive exergaming consists of a series of cognitive and motor tasks with biofeedback technology (e.g., virtual reality, step-mat, sensor) interacting with users in real-time fashion [16]. As compared to traditional PT, the biofeedback technology (e.g., virtual reality) in EI enables creating different types of the training environment and task protocol as needed, achieving a more convenient completion of intervention; and such technology provides real-time biofeedback, allowing users to adjust their motion or body movements during the training [17, 18]. More recently, several studies have shown that using EI only or EI in combination with other types of exercises could help improve balance by augmenting musculoskeletal strength, executive cognitive function, and motor control, thus helping reduce fall risk [19,20,21]. Stanmore et al. [21], for example, reported that as compared to using the physical exercise intervention targeting strength and balance only, a tailored 12-week of EI in combination with this type of PT (i.e., combined intervention) induced greater improvement in the performance of balance control and significantly reduced falls in people aged 55 years and older.
However, a large variance has been observed across these studies in the design of EI (e.g., EI only or EI in combination with other types of intervention) and study protocol [e.g., intervention duration, the type of control group (i.e., blank or active control)]. Such variance consequently results in inconsistent findings. For example, Bateni [22] showed that physical therapy training induced greater improvement in balance control as measured by Berg Balance Scale (BBS), when in comparison with Wii Fit training; while Chen et al. [23] showed that compared to traditional Tai-Chi exercise, reality-assisted training with selected Tai-Chi movements induced greater improvement in balance control measured by BBS, timed-up-and-go test, and functional reach test. The efficacy of EI thus remains unclear, and the underlying mechanisms through which EI influences functional performance are not fully understood. Therefore, this study aims to quantitatively analyze the effects of EI on the performance of balance control and fall prevention in older adults by completing a systematic review and meta-analysis based on the available peer-reviewed publications, with the intent to highlight recent efforts, advances, and possible avenues for future research in this important area.
More at link.
No comments:
Post a Comment