Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, November 26, 2021

Harnessing Neuroplasticity to Promote Brain Health in Aging Adults: Protocol for the MOVE-Cog Intervention Study

 Since your hospital doesn't have a research analyst the results of this study will never get distributed to doctors and then down to patients. So useless research since nothing will occur because of it.

Harnessing Neuroplasticity to Promote Brain Health in Aging Adults: Protocol for the MOVE-Cog Intervention Study

Background:  

Extensive evidence supports a link between aerobic exercise and cognitive improvements in aging adults. A major limitation with existing research is the high variability in cognitive response to exercise. Our incomplete understanding of the mechanisms that influence this variability and the low adherence to exercise are critical knowledge gaps and major barriers for the systematic implementation of exercise for promoting cognitive health in aging.

Objective:  

We aimed to provide an in-person and remotely delivered intervention study protocol with the main goal of informing the knowledge gap on the mechanistic action of exercise on the brain by characterizing important mechanisms of neuroplasticity, cardiorespiratory fitness response, and genetics proposed to underlie cognitive response to exercise.

Methods:  

This is an open-label, 2-month, interventional study protocol in neurologically healthy sedentary adults. This study was delivered fully in-person and in remote options. Participants underwent a total of 30 sessions, including the screening session, 3 pretest (baseline) assessments, 24 moderate-to-vigorous aerobic exercise sessions, and 3 posttest assessments. We recruited participants aged 55 years and above, sedentary, and cognitively healthy. Primary outcomes were neuroplasticity, cognitive function, and cardiorespiratory fitness. Secondary outcomes included genetic factors, endothelium function, functional mobility and postural control, exercise questionnaires, depression, and sleep. We also explored study feasibility, exercise adherence, technology adaptability, and compliance of both in-person and remote protocols.

Results:  

The recruitment phase and data collection of this study have concluded. Results are expected to be published by the end of 2021 or in early 2022.

Conclusions:  

The data generated in these studies will introduce tangible parameters to guide the development of personalized exercise prescription models for maximal cognitive benefit in aging adults. Successful completion of the specific aims will enable researchers to acquire the appropriate expertise to design and conduct studies by testing personalized exercise interventions in person and remotely delivered, likely to be more effective at promoting cognitive health in aging adults.

Trial Registration: ClinicalTrials.gov NCT03804528; http://clinicaltrials.gov/ct2/show/NCT03804528

International Registered Report Identifier (IRRID): RR1-10.2196/33589

JMIR Res Protoc 2021;10(11):e33589

doi:10.2196/33589
 

No comments:

Post a Comment