Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, November 16, 2021

Distal Medium Vessel Occlusions Can Be Accurately and Rapidly Detected Using Tmax Maps

So what are your rapid and accurate recovery protocols after this identification? If you don't have any, do you even know what stroke research is for? 100% recovery and you didn't do your job properly.

Distal Medium Vessel Occlusions Can Be Accurately and Rapidly Detected Using Tmax Maps

Originally publishedhttps://doi.org/10.1161/STROKEAHA.120.032941Stroke. 2021;52:3308–3317

Background and Purpose:

Distal medium vessel occlusions (DMVOs) are increasingly considered for endovascular thrombectomy but are difficult to detect on computed tomography angiography (CTA). We aimed to determine whether time-to-maximum of tissue residue function (Tmax) maps, derived from CT perfusion, can be used as a triage screening tool to accurately and rapidly identify patients with DMVOs.

Methods:

Consecutive code stroke patients who underwent multimodal CT were screened retrospectively. Two experienced readers evaluated all patients’ Tmax maps in consensus for presence of delay in an arterial territory (territorial Tmax delay). The diagnostic accuracy of this surrogate for identifying DMVOs was determined using receiver-operating characteristic analysis. CTA, interpreted by 2 experienced neuroradiologists with access to all imaging data, served as the reference standard. Diagnostic performance of 4 other readers with different levels of experience for identifying DMVOs on Tmax versus CTA was also assessed. These readers independently assessed patients’ Tmax maps and CTAs in 2 separate timed sessions, and areas under the receiver-operating characteristic curves were compared using the DeLong algorithm. The Wilcoxon signed-rank test was used to comparatively assess diagnostic speed.

Results:

Three hundred seventy-three code stroke patients (median age, 70 years; 56% male, 70 with a DMVO) were included. Territorial Tmax delay had a sensitivity of 100% (CI95, 94.9%–100%) and specificity of 87.8% (CI95, 83.6%–91.3%) for presence of a DMVO, yielding an area under the receiver-operating characteristic curves of 0.939 (CI95, 0.920–0.957). All 4 readers achieved sensitivity >95% and specificity >84% for detecting DMVOs using Tmax maps, with diagnostic accuracy (area under the receiver-operating characteristic curves) and speed that were significantly (P<0.001) higher than on CTA.

Conclusions:

Territorial Tmax delay had perfect sensitivity and high specificity for a DMVO. Tmax maps were accurately and rapidly interpreted by even inexperienced readers, and causes of false positives are easy to recognize and dismiss. These findings encourage the use of Tmax to identify patients with DMVOs.

 
 

No comments:

Post a Comment