Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, March 10, 2025

Novel Robotic Balloon-Based Device for Wrist-Extension Therapy of Hemiparesis Stroke Patients

 

Balonikotron video here: Hope you understand Polish, although I never did see a wrist in the device

Novel Robotic Balloon-Based Device for Wrist-Extension Therapy of Hemiparesis Stroke Patients            

                                 by 1,*, 1, 1 and 2
1
Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
2
Institute of Automatic Control, Lodz University of Technology, Stefanowskiego 18, 90-537 Lodz, Poland
*
Author to whom correspondence should be addressed.
Sensors 2025, 25(5), 1360; https://doi.org/10.3390/s25051360
Submission received: 16 December 2024 / Revised: 13 February 2025 / Accepted: 21 February 2025 / Published: 23 February 2025

Abstract

Upper-limb paresis is one of the main complications after stroke. It is commonly associated with impaired wrist-extension function. Upper-limb paresis can place a tremendous burden on stroke survivors and their families. A novel soft-actuator device, the Balonikotron, was designed to assist in rehabilitation by utilizing a balloon mechanism to facilitate wrist-extension exercises. This pilot study aimed to observe the functional changes in the paralyzed upper limb and improvements in independent and cognitive functions following a 4-week regimen using the device, which incorporates a multimedia tablet application providing audiovisual feedback. The device features a cardboard construction with a hinge at wrist level and rails that guide hand movement as the balloon inflates, controlled by a microcontroller and a tablet-based application. It operates on the principle of moving the hand at the wrist by pushing the palm upwards through a surface actuated by a balloon. A model was developed to describe the relationship between the force exerted on the hand, the angle on hinge, the pressure within the balloon, and its volume. Experimental validation demonstrated a Pearson correlation of 0.936 between the model’s force predictions and measured forces, supporting its potential for real-time safety monitoring by automatically shutting down when force thresholds are exceeded. A pilot study was conducted with 12 post-stroke patients (six experimental, six control), who participated in a four-week wrist-extension training program. Clinical outcomes were assessed using the Fugl–Meyer Assessment for the Upper Extremity (FMA-UE), Modified Rankin Scale (mRS), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MOCA), wrist Range of Motion (ROM), and Barthel Index (BI). Statistically significant results were obtained for the Barthel index (p < 0.05) and FMA-UE, indicating that the experimental use of the device significantly improved functional independence and self-care abilities. The results of our pilot study suggest that the Balonikotron device, which uses the principles of mirror therapy, may serve as a valuable adjunct to conventional rehabilitation for post-stroke patients with hemiparetic hands (BI p = 0.009, MMSE p = 0.151, mRS p = 0.640, FMA-UE p = 0.045, MOCA p = 0.187, ROM p = 0.109).

No comments:

Post a Comment