Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, October 7, 2013

Age-Related Decline in the Rate of Force Development Scaling Factor

Ask your doctor how they are applying these decline problems to the different ages of strokies. Accounting for 100% recovery, of course.
http://journals.humankinetics.com/mc-current-issue/mc-volume-17-issue-4-october/age-related-decline-in-the-rate-of-force-development-scaling-factor
Physical quickness is less in older adults with implications for fall prevention, movement initiation, and activities of daily living. The purpose was to compare control of rapid contractions in young and older adults within two diverse muscle groups: powerful elbow extensors (EE) and dexterous index finger abductors (IFA). Most-rapid force pulses to a variety of levels were recorded and peak force and rate of force development (RFD) were analyzed with linear regression. The resulting slope represents the dependent variable of interest, the RFD-scaling factor (RFD-SF). RFD-SF of EE and IFA strongly correlated both overall (r = .87, p < .01) and separately in young (r = .60, p < .05) and older (r = .77, p < .01) adults. RFD-SF values were different between muscle groups (F1,28  = 19.1, p <.001) and also less in elderly (F1,28  = 32.6, p < .001). We conclude that RFD-SF provides a sensitive assessment of muscle quickness that can be used to evaluate neuromuscular function in aging humans.

Authors: Maria Bellumori, Slobodan Jaric, Christopher A. Knight
If you are a subscriber, please
sign in to view the article.

No comments:

Post a Comment