Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, October 7, 2013

Drift and Diffusion in Movement Adaptation to Space-Time Constraints

Your therapist can tell you how this is being used in your stroke protocol to get to 100% recovery.
http://journals.humankinetics.com/mc-current-issue/mc-volume-17-issue-4-october/drift-and-diffusion-in-movement-adaptation-to-space-time-constraints
Recent studies have shown more than one time scale of change in the movement dynamics of practice. Here, we decompose the drift and diffusion dynamics in adaptation to performing discrete aiming movements with different space-time constraints. Participants performed aiming movements on a graphics drawing board to a point target at 5 different space-time weightings on the task outcome. The drift was stronger the shorter the time constraint whereas noise was U-shaped across the space-time conditions. The drift and diffusion of adaptation in discrete aiming movements varied as a function of the space-time constraints on performance outcome and the spatial, temporal, or space-time measure of performance outcome. The findings support the postulation that the time scale of movement adaptation is task dependent.

Keywords: speed and accuracy trade-off, multiple time-scale, motor learning

Authors: Yeou-Teh Liu, Tsung-Yu Hsieh, Karl M. Newell
If you are a subscriber, please
sign in to view the article.

No comments:

Post a Comment