Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, October 28, 2013

Smart neurons: Single neuronal dendrites can perform computations

If our neurons are so damned smart why don't our doctors know how to engage them to get to our 100% recovery? Your doctor needs to answer that question, keep asking until an answer comes, it will take 30 years at best.
http://www.alphagalileo.org/ViewItem.aspx?ItemId=135850&CultureCode=en
When you look at the hands of a clock or the streets on a map, your brain is effortlessly performing computations that tell you about the orientation of these objects. New research by UCL scientists has shown that these computations can be carried out by the microscopic branches of neurons known as dendrites, which are the receiving elements of neurons.
The study, published today (Sunday) in Nature and carried out by researchers based at the Wolfson Institute for Biomedical Research at UCL, the MRC Laboratory for Molecular Biology in Cambridge and the University of North Carolina at Chapel Hill, examined neurons in areas of the mouse brain which are responsible for processing visual input from the eyes. The scientists achieved an important breakthrough: they succeeded in making incredibly challenging electrical and optical recordings directly from the tiny dendrites of neurons in the intact brain while the brain was processing visual information.
These recordings revealed that visual stimulation produces specific electrical signals in the dendrites – bursts of spikes – which are tuned to the properties of the visual stimulus.
The results challenge the widely held view that this kind of computation is achieved only by large numbers of neurons working together, and demonstrate how the basic components of the brain are exceptionally powerful computing devices in their own right.
Senior author Professor Michael Hausser commented: “This work shows that dendrites, long thought to simply ‘funnel’ incoming signals towards the soma, instead play a key role in sorting and interpreting the enormous barrage of inputs received by the neuron. Dendrites thus act as miniature computing devices for detecting and amplifying specific types of input.
“This new property of dendrites adds an important new element to the “toolkit” for computation in the brain. This kind of dendritic processing is likely to be widespread across many brain areas and indeed many different animal species, including humans.”
Funding for this study was provided by the Gatsby Charitable Foundation, the Wellcome Trust, and the European Research Council, as well as the Human Frontier Science Program, the Klingenstein Foundation, Helen Lyng White, the Royal Society, and the Medical Research Council.

No comments:

Post a Comment