Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, July 24, 2014

Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions

What is your doctor doing with this knowledge to update your stroke protocols and get you closer to 100% recovery?
http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00518/full?
Penelope A. McNulty1,2*, Gaven Lin1 and Catherine G. Doust1,2
  • 1Neuroscience Research Australia, Sydney, NSW, Australia
  • 2School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
Muscle weakness is the most common outcome after stroke and a leading cause of adult-acquired motor disability. Single motor unit properties provide insight into the mechanisms of post-stroke motor impairment. Motor units on the more-affected side are reported to have lower peak firing rates, reduced discharge variability and a more compressed dynamic range than healthy subjects. The activity of 169 motor units was discriminated from surface electromyography in 28 stroke patients during sustained voluntary contractions 10% of maximal and compared to 110 units recorded in 16 healthy subjects. Motor units were recorded in three series: ankle dorsiflexion, wrist flexion and elbow flexion. Mean firing rates after stroke were significantly lower on the more-affected than the less-affected side (p < 0.001) with no differences between dominant and non-dominant sides for healthy subjects. When data were combined, firing rates on the less-affected side were significantly higher than those either on the more-affected side or healthy subjects (p < 0.001). Motor unit mean firing rate was higher in the upper-limb than the lower-limb (p < 0.05). The coefficient of variation of motor unit discharge rate was lower for motor units after stroke compared to controls for wrist flexion (p < 0.05) but not ankle dorsiflexion. However the dynamic range of motor units was compressed only for motor units on the more-affected side during wrist flexion. Our results show that the pathological change in motor unit firing rate occurs on the less-affected side after stroke and not the more-affected side as previously reported, and suggest that motor unit behavior recorded in a single muscle after stroke cannot be generalized to muscles acting on other joints even within the same limb. These data emphasize that the less-affected side does not provide a valid control for physiological studies on the more-affected side after stroke and that both sides should be compared to data from age- and sex-matched healthy subjects.

Introduction

Stroke is the leading cause of adult-acquired motor disability in developed countries (WHO, 2003). The most common outcome after stroke, and the most common cause of motor disability, is hemiparesis or weakness on the side of the body contralateral to the stroke lesion (e.g., Chang et al., 2013). Although the acute lesion is restricted to the brain, secondary adaptive and maladaptive changes may contribute to hemiparesis. There are four principal sites where such degeneration has the capacity to contribute to muscle weakness: (i) cerebral diaschisis (Feeney and Baron, 1986); (ii) reduced corticospinal tract integrity (Fries et al., 1993; Pineiro et al., 2000; Sterr et al., 2010; Stinear et al., 2012); (iii) changes to peripheral motor axon properties (Jankelowitz et al., 2007; Huynh et al., 2013); and (iv) anatomical and physiological changes within the muscle and its constituent single motor units. This study will consider single motor unit discharge behavior.
There are both anatomical and physiological changes within the muscles of the more-affected side after stroke. The anatomical changes may include disuse atrophy (Jørgensen and Jacobsen, 2001; Ryan et al., 2002; Hara et al., 2004; Arasaki et al., 2006; Li et al., 2011); altered muscle phenotype (Jakobsson et al., 1991; De Deyne et al., 2004; Lukács et al., 2008; McKenzie et al., 2009); and reinnervation (Dattola et al., 1993; Hara et al., 2004; Lukács, 2005). Physiological changes include altered motoneuron pool activation so that there is a reduction in the mean motor unit discharge rate and the variability of this discharge (Rosenfalck and Andreassen, 1980; Dietz et al., 1986; Gemperline et al., 1995; Chou et al., 2013); disrupted recruitment threshold (including lower recruitment thresholds, reversed recruitment thresholds so that fast motor units are recruited before slower motor units, and a reduced range over which recruitment occurs), reduced modulation of firing rates, and compression of the dynamic range of motor unit discharge rates (Rosenfalck and Andreassen, 1980; Gemperline et al., 1995; Hu et al., 2012; Chou et al., 2013). Such changes contribute not only to hemiparesis, but also to reduced control of muscles on the more-affected side after stroke.
Single motor units are the smallest functional division of muscles. They represent the most distal component of the motor pathway and their discharge behavior reflects the intrinsic properties of both the motoneuron and the muscle fibers in addition to the net synaptic drive through this pathway. Recent data from our group recorded during post-stroke therapy demonstrated that the activity of isolated single motor units in severely paretic muscles precedes the development of compound muscle activity (i.e., multiple motor units recruited through voluntary commands), and that this progression is a hallmark of improved movement ability, even many years post-stroke (see McNulty et al., 2013; Thompson-Butel et al., 2013). To understand the process of recovery from isolated single motor unit activity to compound activity during dynamic movements it is simpler to begin with more controlled static tasks so that changes in the properties of single motor units, and the mechanisms controlling this behavior, can be investigated more systematically. The aim of this study was to examine the pattern of motor unit behavior during sustained static contractions.
The changes in motor unit discharge properties noted above have been measured over brief periods, usually from 5–20 s with a range of different tasks and levels of voluntary contraction. Each of these differences may be sufficient to alter the net synaptic drive to the motoneuron pool. For this reason, we extracted the action potentials of single motor units that were either spontaneously active or task-driven during a sustained isometric voluntary contraction at a functionally relevant duration and force intensity during ankle dorsiflexion, wrist flexion and elbow flexion. Motor units were recorded from both the more- and less-affected side after stroke and on both the dominant and non-dominant side in healthy subjects. Motor unit activity during contractions acting on three joints was studied because there are anatomical and functional differences in the control of muscles in the upper and lower limbs, and between proximal and distal muscles of the upper-limb. These differences include different innervation ratios (Buchthal and Schmalbruch, 1980), more numerous monosynaptic corticospinal (Palmer and Ashby, 1992) or bilateral (Colebatch et al., 1990) projections, and differences in mean firing rates (Petajan and Philip, 1969; de Luca, 1985). These differences are superimposed on functional recovery after stroke that is typically greater for the lower-limb than for the upper-limb although the reason for this is not clear. To ensure the results of this study do not simply reflect the differences listed here, data were collected during contractions at three joints. We compared differences in firing rates and the variability of the firing rate between sides and between the upper and lower limb. Data were recorded during elbow flexion from stroke subjects only to examine the effect of hand dominance on the control of motor unit behavior after stroke. Our results suggest that although motor units on the more-affected side have a reduced firing rate compared to the less-affected side as reported previously, the important difference is that the firing rate of motor units on the less-affected side after stroke is higher than both the more-affected side and motor units of healthy subjects.

More at link, including tables and graphs.

No comments:

Post a Comment