Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, January 12, 2021

Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: a case control study

Was failure to induce motor changes because the extra 45 minutes 5 times a week for 3 weeks wasn't intensive enough? WHOM  is going to answer that simple question? 

Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: a case control study

Abstract

Background

Physical training is able to induce changes at neurophysiological and behavioral level associated with performance changes for the trained movements. The current study explores the effects of an additional intense robot-assisted upper extremity training on functional outcome and motor excitability in subacute stroke patients.

Methods

Thirty moderately to severely affected patients < 3 months after stroke received a conventional inpatient rehabilitation. Based on a case–control principle 15 patients were assigned to receive additional 45 min of robot-assisted therapy (Armeo®Spring) 5 times per week (n = 15, intervention group, IG). The Fugl-Meyer Assessment for the Upper Extremity (FMA-UE) was chosen as primary outcome parameter. Patients were tested before and after a 3-week treatment period as well as after a follow-up period of 2 weeks. Using transcranial magnetic stimulation motor evoked potentials (MEPs) and cortical silent periods were recorded from the deltoid muscle on both sides before and after the intervention period to study effects at neurophysiological level. Statistical analysis was performed with non-parametric tests. Correlation analysis was done with Spearman´s rank correlation co-efficient.

Results

Both groups showed a significant improvement in FMA-UE from pre to post (IG: + 10.6 points, control group (CG): + 7.3 points) and from post to follow-up (IG: + 3.9 points, CG: + 3.3 points) without a significant difference between them. However, at neurophysiological level post-intervention MEP amplitudes were significantly larger in the IG but not in the CG. The observed MEP amplitudes changes were positively correlated with FMA-UE changes and with the total amount of robot-assisted therapy.

Conclusion

The additional robot-assisted therapy induced stronger excitability increases in the intervention group. However, this effect did not transduce to motor performance improvements at behavioral level.

Trial registration The trial was registered in German Clinical Trials Register. Clinical trial registration number: DRKS00015083. Registration date: September 4th, 2018. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00015083. Registration was done retrospectively

Introduction

Stroke patients frequently suffer from motor deficits [1]. The prognosis in severely affected individuals is poor with about 60% failing to achieve at least some dexterity at 6 months after stroke [2]. Thus, further reduction of these deficits is a major challenge for rehabilitation. Various techniques as constraint-induced movement therapy, mirror therapy, virtual reality, neuro-muscular electrical stimulations, task-oriented training and the use of (electro)-mechanical devices to support motor rehabilitation have been recommended so far [3, 4]. Lately, electro-mechanical and robot-driven devices were shown to be effective regarding activities of daily living as well as arm and hand function [5]. However, the authors pointed out that intensity, duration, amount and type of training, device type, participants´ characteristics varied in studies included in their meta-analysis leading to lower evidence quality [5, 6]. Other authors also emphasized that detailed recommendations regarding training intensity and frequency are missing [7]. However, some evidence is available indicating that more movement practice leads to better outcomes [8, 9]. Furthermore, it was recommended to increase exercise intensity by making the tasks more difficult and/or increasing the number of repetitions [10, 11]. Presumably, robot-assisted therapy is effective because it allows to deliver both: high-dosage and high-intensity training [12].

Most studies that evaluated an intense training program have been conducted in chronic stroke patients [13,14,15,16,17,18]. Much less is known about the impact of robot-assisted therapy as well as the dosage for the paretic upper limb within the first 3 months after the stroke [7].

Moreover, the results of rehabilitation are usually presented as improvements in motor function using behavioral measures. Our understanding of the pathophysiology of motor dysfunction and recovery is still limited [19]. In order to optimally design the rehabilitation program, a more complete understanding of the physiological processes of recovery is required [19]. Transcranial magnetic stimulation (TMS) as a suitable tool for safe and painless examination of cortical and corticospinal physiology could help to clarify these processes [20]. Previous studies in stroke patients have shown an enlargement of motor cortex representations after exercises as well as due to spontaneous functional recovery [21,22,23].

To address some of the raised topics, we investigated the effects of an additional robot-assisted training of the upper extremity in subacute stroke patients. For the training we used an upper extremity exoskeleton that provides an adjustable arm support and allows gravity-supported and computer-enhanced arm exercises (Armeo®Spring). Several studies using this device have already demonstrated improvements in motor functions, including increases of strength, as well as reductions of spasticity and pain [24,25,26].

The present study was performed in patients who received a multidisciplinary inpatient rehabilitation. It was designed to answer three questions:

  1. 1

    Does this intensified treatment lead to clinical improvements?

  2. 2

    Does the additional training induce motor excitability changes and how do these relate to improvements of motor functions?

  3. 3

    Is it feasible to increase the amount of motor training relatively early after a severe stroke or would patients discontinue their participation, e.g. due to too much fatigue?(Well, what about action observation and mirror therapy? Or is that also too fatiguing?)

 

No comments:

Post a Comment