Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, September 30, 2021

Hypoxic postconditioning promotes neurogenesis by modulating the metabolism of neural stem cells after cerebral ischemia

Nothing in here tells me if ANY RECOVERY WAS ACHIEVED. Useless.

Hypoxic postconditioning promotes neurogenesis by modulating the metabolism of neural stem cells after cerebral ischemia

 

https://doi.org/10.1016/j.expneurol.2021.113871Get rights and content

Highlights

Cerebral ischemia modulated the FAO and glycolysis of neural stem cells.

HPC promoted the migration and proliferation of neural stem cells after MCAO.

HPC modulated the FAO and glycolysis of neural stem cells in vivo and in vitro.

Abstract

Ischemic stroke is one of the most lethal and severely disabling diseases that seriously affects human health and quality of life. The maintenance of self-renewal and differentiation of neural stem cells are closely related to metabolism. This study aimed to investigate whether hypoxic postconditioning (HPC) could promote neurogenesis after ischemic stroke, and to investigate the role of neuronal stem cell metabolism in HPC-induced neuroprotection. Male C57BL/6 mice were subjected to transient middle cerebral artery occlusion (MCAO), and HPC was performed for 3 h per day. Immunofluorescence staining was used to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 21% O2 or 8% O2. HPC promoted the recovery of neurological function in mice on day 14. HPC promoted neuronal precursor proliferation in the subventricular zone (SVZ) on day 7 and enhanced neuronal precursor migration in the basal ganglia and cortex on day 14. Fatty acid oxidation (FAO) and glycolysis of neural stem cells in the SVZ changed after MCAO with or without HPC. HPC promoted the proliferation of NE-4C stem cells, decreased FAO and increased glycolysis. All these beneficial effects of HPC were ablated by the application of an FAO activator or a glycolysis inhibitor. In conclusion, cerebral ischemia modulated the FAO and glycolysis of neural stem cells. HPC promoted the proliferation and migration of neural stem cells after MCAO, and these effects may be related to the regulation of metabolism, including FAO and glycolysis.

No comments:

Post a Comment