Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, September 18, 2021

Functional Recovery Following Stroke : Capturing Changes in Upper-Extremity Function

Who cares how the therapist measures recovery? You ask the survivor a binary question: Are you 100% recovered? Yes/No? If no you continue with prescribed EXACT STROKE REHAB PROTOCOLS until the survivor is satisfied. 

Functional Recovery Following Stroke : Capturing Changes in Upper-Extremity Function

 Lisa A. Simpson, BSc
1
,
and Janice J. Eng, PhD
1

Abstract

Background and purpose
Augmenting changes in recovery is core to the rehabilitation process following a stroke. Hence it is essential that outcome measures are able to detect change as it occurs, a property known as responsiveness. This article critically reviewed the responsiveness of functional outcome measures following stroke, specifically examining tools that captured upper-extremity (UE) functional recovery.
 Methods
A systematic search of the literature was undertaken to identify articles providing responsiveness data for 3 types of change (observed, detectable, and important).
Results
Data from 68 articles for 14 UE functional outcome measures were retrieved. Larger percentage changes were required to be considered important when obtained through anchor-based methods (eg, based on patient opinion or comparative measure) compared with distribution methods (eg, statistical estimates). Larger percentage changes were required to surpass the measurement error for patient-perceived functional measures (eg, Motor Activity Log) compared with laboratory-based performance measures (eg, Action Research Arm Test). The majority of rehabilitation interventions have similar effect sizes on patient-perceived UE function and laboratory-based UE function.
Conclusions
The magnitude of important change or change that surpasses measurement error can vary substantially depending on the method of calculation. Rehabilitation treatments can affect patient perceptions of functional change as effectively as laboratory-based functional measures; however, larger sample sizes may be required to account for the larger measurement error associated with patient-perceived functional measures.
 

No comments:

Post a Comment