Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, May 3, 2011

Liposome-encapsulated hemoglobin ameliorates ischemic stroke

A bit too scientific for me, but I liked the result of reducing the infarction. So I wonder if the full article mentions how long after onset it would be useful.
http://www.ncbi.nlm.nih.gov/pubmed/19910538
Abstract
An artificial oxygen carrier, liposome-encapsulated hemoglobin (LEH), protective in a rodent stroke model, was quantitatively evaluated in monkeys. Serial positron emission tomography studies using the steady-state (15)O-gas inhalation method were performed to quantify O(2) metabolism, which was compared based on the infarction extent and immunohistochemical evaluation in 19 monkeys undergoing middle cerebral artery occlusion (3 h), infusion of various LEH doses (n = 11), empty liposome (n = 4), or saline (n = 4) 5 min after the onset of ischemia, and reperfusion for 5 h. There was no significant difference in O(2) metabolism until 3 h after reperfusion, when the cerebral metabolic rate of O(2) (CMRO(2)) was significantly less suppressed in the cortex [mild suppression in CMRO(2) (71-100%) of preischemic ipsilateral control as in the ischemic penumbra: 64.7 +/- 14.3% in empty liposome versus 32.4 +/- 7.9% in LEH (2 ml/kg) treatment, P < 0.05] but not in basal ganglia. Immunohistochemical studies showed a reciprocal expression of microtubular-associated protein II expression in the cortex and LEH deposition in basal ganglia, suggesting the LEH perfusion, but not deposition, afforded the protection. Dose-response studies revealed that as little as 0.4 ml/kg LEH (24 mg/kg hemoglobin) was effective in preserving CMRO(2), whereas 2 and 10 ml/kg were protective in significantly reducing the area of infarction as well, by 66 and 56%, respectively, compared with animals receiving saline. CMRO(2) and histological integrity were better preserved early after 3-h occlusion and reperfusion of the middle cerebral artery of monkeys receiving LEH early after onset of ischemia.

No comments:

Post a Comment