Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, May 20, 2011

Convection-enhanced drug delivery (CED) to directly deliver drugs into brain tissue

http://cancerres.aacrjournals.org/content/65/15/6858.abstract
Abstract
Convection-enhanced drug delivery (CED) is a novel approach to directly deliver drugs into brain tissue and brain tumors. It is based on delivering a continuous infusion of drugs via intracranial catheters, enabling convective distribution of high drug concentrations over large volumes of the target tissue while avoiding systemic toxicity. Efficient formation of convection depends on various physical and physiologic variables. Previous convection-based clinical trials showed significant diversity in the extent of convection among patients and drugs. Monitoring convection has proven to be an essential, yet difficult task. The current study describes the application of magnetic resonance imaging for immediate assessment of convection efficiency and early assessment of cytotoxic tissue response in a rat brain model. Immediate assessment of infusate distribution was obtained by mixing Gd-diethylenetriaminepentaacetic acid in the infusate prior to infusion. Early assessment of cytotoxic tissue response was obtained by subsequent diffusion-weighted magnetic resonance imaging. In addition, the latter imaging methodologies were used to establish the correlation between CED extent and infusate's viscosity. It was found that low-viscosity infusates tend to backflow along the catheter track, whereas high-viscosity infusates tend to form efficient convection. These results suggest that CED formation and extent may be significantly improved by increasing the infusate's viscosities, thus increasing treatment effects.
from May 2005
This should be able to be used to deliver tPA and other acute therapies that stop neuron death.

No comments:

Post a Comment