Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, May 13, 2011

Hormone improves long-term recovery from stroke

http://insciences.org/article.php?article_id=10107
Scientists at the Sahlgrenska Academy have discovered an explanation of how stroke patients can achieve better recovery. A hormone that is associated with the growth hormone system has proved to benefit recovery during the later phases of rehabilitation after a stroke.
Insulin-like growth factor I, IGF-I, is a hormone that is found in the blood and contributes to, among other things, growth and bone mass. The levels of this hormone are higher in people who exercise regularly and those with good health. Scientists at the Sahlgrenska Academy have shown for the first time that high levels of this hormone are associated with better long-term recovery after a stroke. The study has been presented in an article in the Journal of Clinical Endocrinology and Metabolism.
“This study is interesting for two reasons. The first is that we show that a hormone is associated with improved long-term recovery, and thus there is still the prospect of improvement – even after three months after the stroke. The second is that levels of this hormone are known to be elevated in those who exercise often”, says Associate Professor David Åberg at the Sahlgrenska Academy, who has led the study in collaboration with Professor Jörgen Isgaard.
“It is, however, important to add that the levels of IGF-I are controlled also by other factors such as other growth hormones, heredity and nutrition”, emphasises David Åberg.
The study is based on 407 patients who are participating in the SAHLSIS study at the Sahlgrenska Academy, in which people aged 18-70 years who are affected by stroke are followed up for two years after the event. SAHLSIS is an acronym for “The Sahlgrenska Academy Study on Ischemic Stroke”.
Scientists have measured the levels of IFG-I in these 407 patients and seen that increased levels are associated with better recovery, when the degree of recovery is determined between 3 and 24 months after the stroke. Previous research (Bondanelli et al) has also shown a positive effect of high IGF-I levels in the early phase after a stroke, while the scientists at the Sahlgrenska Academy have now demonstrated that the positive effects on recovery remain long after the stroke event.
“Our results may explain why patients who exercise more actively, with physiotherapy and physical exercise, demonstrate better recovery after a stroke. Unfortunately, we do not know how much our patients exercised after the stroke. This means that we need to carry out further studies in which we measure both the amount of physical activity and the levels of IGF-I, in order to understand the exact relationships better”, David Åberg points out.
These results pave the way for further studies on whether drug treatments that raise IGF-I levels can improve long-term recovery after stroke. David Åberg believes that two avenues are open: either to treat with IGF-I, or to treat with the better known growth hormone (GH). This can stimulate the body’s own production of IGF-I.
“Of course, these possibilities must be tested in carefully constructed clinical trials, so that we discover any undesired effects that must be considered. This is particularly true during the acute phase of a stroke, while treatment during the recovery phase is probably easier and has greater benefit”, says David Åberg.

Publication: “Serum IGF-I Levels Correlate to Improvement of Functional Outcome after Ischemic Stroke”.
Daniel Åberg, Katarina Jood, Christian Blomstrand, Christina Jern, Michael Nilsson, Jörgen Isgaard, and N. David Åberg
Published in The Journal of Clinical Endocrinology and Metabolism

So I wonder how  they might plan on getting the hormones thru the blood-brain barrier

No comments:

Post a Comment