Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, March 15, 2014

Epigenetic aspects of telocytes/cordocytes: jacks of all trades, masters of most

What will your doctor do with this information to ensure your brain is repaired properly? You do expect your doctor to know how to repair your brain, Don't you?
http://journal.frontiersin.org/Journal/10.3389/fncel.2014.00032/full?
Lawrence Edelstein1* and John Smythies2

    1Medimark Corporation, Del Mar, CA, USA
    2Department of Psychology, Center for Brain and Cognition, UCSD, San Diego, CA, USA

Introduction

In a recent review (Smythies and Edelstein, 2013b) we described the structure and function of a new form of interstitial cell found in most mammalian organs, the telocyte/cordocyte (T/C) co-discovered and ascribed accordingly by teams led by Laurentiu Popescu (Popescu et al., 2005; “telocytes”) and Viorel Pais (Danaila and Pais, 2011; Pais et al., 2012, 2013a,b; “cordocytes”). The problem of nomenclature is further complicated by the persistent use of an old name—“interstitial cells of Cajal” or ICCs (e.g., Padhi et al., 2013; Tanahashi et al., 2013). T/Cs make synaptic contacts of various kinds (including puncta adhaerens and gap junctions) with a broad variety of cells and tissue (including blood vessels, nerve fibers, fibroblasts, muscle cells, immune cells, and glandular cells, as well as other T/Cs). The present consensus is that T/Cs are capable of forming an extensive intercellular information transmission and executive system that may utilize electric currents, small molecules, exosomes—and possibly electrical events within the cytoskeleton—to modulate homeostasis, stem cell activity, tissue repair, peristalsis, anticancer activity, and other complex functions in many organs. We herein present a more comprehensive hypothesis of the molecular and cellular bases of the function of T/Cs with a focus on mechanisms for tissue repair.
The Facts

Recently published studies demonstrate that cordocytes (T/Cs) are highly dynamic cells capable of rapidly changing their shape, position, and connections (Danaila and Pais, 2011; Pais et al., 2012, 2013a). These workers also report them as being extensively distributed in the brain in relation to blood vessels, as well as the pia mater and choroid plexus. T/Cs have been shown to rapidly migrate to an injured area via the rapid growth of their long, sinuous processes. In many cases these processes envelop the damaged tissue, with a particular emphasis on repair and abating hemorrhages. As well, (Pais et al., 2013a,b) observed T/C processes closely enveloping tumor tissue in the brain, suggestive of some form of antitumor activity. The authors go on to say (Pais et al., 2013a):

“Under their strict surveillance all cellular movements are controlled, and under their efficient protection all vessels are surrounded by cordocytes, these cells primarily acting against erythrocyte extravasation [i.e., bleeding]… Cordocytes have a fundamental role in cooperation with stem cells for the generation of new cells during regeneration and repair events throughout the brain. These special interstitial cells coordinate and direct stem cells to damaged areas.”

Pais (2013) concludes “In the last instance, the brain performance improves if its microenvironment is maintained under appropriate conditions, for which cordocytes are responsible.”

Comments at the link.
  • 1Medimark Corporation, Del Mar, CA, USA
  • 2Department of Psychology, Center for Brain and Cognition, UCSD, San Diego, CA, USA

Introduction

In a recent review (Smythies and Edelstein, 2013b) we described the structure and function of a new form of interstitial cell found in most mammalian organs, the telocyte/cordocyte (T/C) co-discovered and ascribed accordingly by teams led by Laurentiu Popescu (Popescu et al., 2005; “telocytes”) and Viorel Pais (Danaila and Pais, 2011; Pais et al., 2012, 2013a,b; “cordocytes”). The problem of nomenclature is further complicated by the persistent use of an old name—“interstitial cells of Cajal” or ICCs (e.g., Padhi et al., 2013; Tanahashi et al., 2013). T/Cs make synaptic contacts of various kinds (including puncta adhaerens and gap junctions) with a broad variety of cells and tissue (including blood vessels, nerve fibers, fibroblasts, muscle cells, immune cells, and glandular cells, as well as other T/Cs). The present consensus is that T/Cs are capable of forming an extensive intercellular information transmission and executive system that may utilize electric currents, small molecules, exosomes—and possibly electrical events within the cytoskeleton—to modulate homeostasis, stem cell activity, tissue repair, peristalsis, anticancer activity, and other complex functions in many organs. We herein present a more comprehensive hypothesis of the molecular and cellular bases of the function of T/Cs with a focus on mechanisms for tissue repair.

The Facts

Recently published studies demonstrate that cordocytes (T/Cs) are highly dynamic cells capable of rapidly changing their shape, position, and connections (Danaila and Pais, 2011; Pais et al., 2012, 2013a). These workers also report them as being extensively distributed in the brain in relation to blood vessels, as well as the pia mater and choroid plexus. T/Cs have been shown to rapidly migrate to an injured area via the rapid growth of their long, sinuous processes. In many cases these processes envelop the damaged tissue, with a particular emphasis on repair and abating hemorrhages. As well, (Pais et al., 2013a,b) observed T/C processes closely enveloping tumor tissue in the brain, suggestive of some form of antitumor activity. The authors go on to say (Pais et al., 2013a):
“Under their strict surveillance all cellular movements are controlled, and under their efficient protection all vessels are surrounded by cordocytes, these cells primarily acting against erythrocyte extravasation [i.e., bleeding]… Cordocytes have a fundamental role in cooperation with stem cells for the generation of new cells during regeneration and repair events throughout the brain. These special interstitial cells coordinate and direct stem cells to damaged areas.”
Pais (2013) concludes “In the last instance, the brain performance improves if its microenvironment is maintained under appropriate conditions, for which cordocytes are responsible.”
- See more at: http://journal.frontiersin.org/Journal/10.3389/fncel.2014.00032/full?#sthash.CxHeOOj6.dpuf

No comments:

Post a Comment