Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, March 14, 2014

Halting Immune Response Could Save Brain Cells After Stroke

Well, well, how much more proof is needed to utilize this?
http://www.biosciencetechnology.com/news/2014/03/halting-immune-response-could-save-brain-cells-after-stroke?
A new study in animals shows that using a compound to block the body’s immune response greatly reduces disability after a stroke.
The study by scientists from the University of Wisconsin School of Medicine and Public Health also showed that particular immune cells—CD4+ T-cells produce a mediator, called interleukin (IL)-21 that can cause further damage in stroke tissue.
Moreover, normal mice, ordinarily killed or disabled by an ischemic stroke, were given a shot of a compound that blocks the action of IL-21. Brain scans and brain sections showed that the treated mice suffered little or no stroke damage. 
“This is very exciting because we haven’t had a new drug for stroke in decades, and this suggests a target for such a drug,” says lead author Dr. Zsuzsanna Fabry, professor of pathology and laboratory medicine.
Stroke is the fourth-leading killer in the world and an important cause of permanent disability. In an ischemic stroke, a clot blocks the flow of oxygen-rich blood to the brain. But Fabry explains that much of the damage to brain cells occurs after the clot is removed or dissolved by medicine. Blood rushes back into the brain tissue, bringing with it immune cells called T-cells, which flock to the source of an injury.
The study shows that after a stroke, the injured brain cells provoke the CD4+ T-cells to produce a substance, IL-21, that kills the neurons in the blood-deprived tissue of the brain. The study gave new insight how stroke induces neural injury.

Similar Findings in Humans
Fabry’s co-author Dr. Matyas Sandor, professor of pathology and laboratory medicine, says that the final part of the study looked at brain tissue from people who had died following ischemic strokes. It found that CD4+ T-cells and their protein, IL-21 are in high concentration in areas of the brain damaged by the stroke.
Sandor says the similarity suggests that the protein that blocks IL-21 could become a treatment for stroke, and would likely be administered at the same time as the current blood-clot dissolving drugs.
“We don’t have proof that it will work in humans,” he says, “but similar accumulation of IL-21 producing cells suggests that it might.”
The paper was published in the Journal of Experimental Medicine.
Source: University of Wisconsin School of Medicine and Public Health

No comments:

Post a Comment