And if we had a great stroke association a request for proposal would have gone out to stroke researchers the next week, asking for translational research projects that would solve this problem. But instead we have press release organizations. So you as a survivor will not be helped by the time you have your next stroke.
http://www.sciencedaily.com/releases/2014/03/140326153721.htm?
Date:
March 26, 2014
Source:
University College London
Summary:
Long-term
brain damage caused by stroke could be reduced by saving cells called
pericytes that control blood flow in capillaries, reports a new study.
The results show not only that pericytes are the main regulator of blood
flow to the brain, but also that they tighten and die around
capillaries after stroke. This significantly impairs blood flow in the
long term, causing lasting damage to brain cells.
Long-term
brain damage caused by stroke could be reduced by saving cells called
pericytes that control blood flow in capillaries, reports a new study
led by scientists from UCL (University College London).
Until
now, many scientists believed that blood flow within the brain was
solely controlled by changes in the diameter of arterioles, blood
vessels that branch out from arteries into smaller capillaries. The
latest research reveals that the brain's blood supply is in fact chiefly
controlled by the narrowing or widening of capillaries as pericytes
tighten or loosen around them.
The study, published this week in Nature, shows not only that pericytes are the main regulator of blood flow to the brain, but also that they tighten and die around capillaries after stroke. This significantly impairs blood flow in the long term, causing lasting damage to brain cells. The team of scientists from UCL, Oxford University and the University of Copenhagen showed that certain chemicals could halve pericyte death from simulated stroke in the lab, and hope to develop these into drugs to treat stroke victims.
"At present, clinicians can remove clots blocking blood flow to the brain if stroke patients reach hospital early enough," explains Professor David Attwell of UCL's Department of Neuroscience, Physiology & Pharmacology, who led the study. "However, the capillary constriction produced by pericytes may, by restricting the blood supply for a long time, cause further damage to nerve cells even after the clot is removed. Our latest research suggests that devising drugs to prevent capillary constriction may offer new therapies for reducing the disability caused by stroke."
"This discovery offers radically new treatment approaches for stroke," says study co-author Professor Alastair Buchan, Dean of Medicine and Head of the Medical Sciences Division at Oxford University. "Importantly, we should now be able to identify drugs that target these cells. If we are able to prevent pericytes from dying, it should help restore blood flow in the brain to normal and prevent the ongoing slow damage we see after a stroke which causes so much neurological disability in our patients."
The new research also gives insight into the mechanisms underlying the use of functional magnetic resonance imaging to detect blood flow changes in the brain.
"Functional imaging allows us to see the activity of nerve cells within the human brain but until now we didn't quite know what we were looking at," explains Professor Attwell. "We have shown that pericytes initiate the increase in blood flow seen when nerve cells become active, so we now know that functional imaging signals are caused by a pericyte-mediated increase of capillary diameter. Knowing exactly what functional imaging shows will help us to better understand and interpret what we see."
The study, published this week in Nature, shows not only that pericytes are the main regulator of blood flow to the brain, but also that they tighten and die around capillaries after stroke. This significantly impairs blood flow in the long term, causing lasting damage to brain cells. The team of scientists from UCL, Oxford University and the University of Copenhagen showed that certain chemicals could halve pericyte death from simulated stroke in the lab, and hope to develop these into drugs to treat stroke victims.
"At present, clinicians can remove clots blocking blood flow to the brain if stroke patients reach hospital early enough," explains Professor David Attwell of UCL's Department of Neuroscience, Physiology & Pharmacology, who led the study. "However, the capillary constriction produced by pericytes may, by restricting the blood supply for a long time, cause further damage to nerve cells even after the clot is removed. Our latest research suggests that devising drugs to prevent capillary constriction may offer new therapies for reducing the disability caused by stroke."
"This discovery offers radically new treatment approaches for stroke," says study co-author Professor Alastair Buchan, Dean of Medicine and Head of the Medical Sciences Division at Oxford University. "Importantly, we should now be able to identify drugs that target these cells. If we are able to prevent pericytes from dying, it should help restore blood flow in the brain to normal and prevent the ongoing slow damage we see after a stroke which causes so much neurological disability in our patients."
The new research also gives insight into the mechanisms underlying the use of functional magnetic resonance imaging to detect blood flow changes in the brain.
"Functional imaging allows us to see the activity of nerve cells within the human brain but until now we didn't quite know what we were looking at," explains Professor Attwell. "We have shown that pericytes initiate the increase in blood flow seen when nerve cells become active, so we now know that functional imaging signals are caused by a pericyte-mediated increase of capillary diameter. Knowing exactly what functional imaging shows will help us to better understand and interpret what we see."
This is an encouraging development. I hope they succeed. It would be an elegantly simple solution.
ReplyDelete