Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, April 6, 2016

Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

Maybe 50 years from now this will be far enough along to actually be a treatment. But only if our fucking failures of stroke associations are destroyed and replaced with survivor focused ones with real leaders and strategies.
http://stm.sciencemag.org/content/8/333/333ra50
Science Translational Medicine  06 Apr 2016:
Vol. 8, Issue 333, pp. 333ra50
DOI: 10.1126/scitranslmed.aad6100
You are currently viewing the abstract.
View Full Text

Dissolving away cholesterol

Cardiovascular disease resulting from atherosclerosis is one of the most common causes of death worldwide, and additional therapies for this disease are greatly needed because not all patients can be effectively treated with existing approaches. Cyclodextrin is a common FDA-approved substance that is already used as a solubilizing agent to improve delivery of various drugs. Now, Zimmer et al. have discovered that cyclodextrin can also solubilize cholesterol, removing it from plaques, dissolving cholesterol crystals, and successfully treating atherosclerosis in a mouse model. Because cyclodextrin is already known to be safe in humans, this drug is now a potential candidate for testing in human patients for the treatment of atherosclerosis.

Abstract

Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B–containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)–mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.

No comments:

Post a Comment