Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, February 23, 2019

Cortical atrophy and transcallosal diaschisis following isolated subcortical stroke

So you have described a problem. What is the solution? 

Maybe this from March 2018? What does your doctor have for fixing this?

The Role of Diaschisis in Stroke Recovery March 2018

  The latest here:

Cortical atrophy and transcallosal diaschisis following isolated subcortical stroke

First Published February 20, 2019 Research Article



Following acute ischemic stroke, isolated subcortical lesions induce gray matter atrophy in anatomically connected, yet distant cortical brain regions. We expand on previous studies by analyzing cortical thinning in contralesional, homologous regions indirectly linked to primary stroke lesions via ipsilesional cortical areas. For this purpose, stroke patients were serially studied by magnetic resonance imaging (diffusion tensor imaging and high-resolution anatomical imaging) in the acute (days 3–5) and late chronic stage one year after stroke. We analyzed changes of gray and white matter integrity in 18 stroke patients (median age 68 years) with subcortical stroke. We applied probabilistic fiber tractography to identify brain regions connected to stroke lesions and contralesional homologous areas. Cortical thickness was quantified by semi-automatic measurements, and fractional anisotropy was analyzed. One year after stroke, significant decrease of cortical thickness was detected in areas connected to ischemic lesions (mean −0.15 mm; 95% CI −0.23 to −0.07 mm) as well as homologous contralateral brain regions (mean −0.13 mm; 95% CI −0.07 to −0.19 mm). We detected reduced white matter integrity of inter- and intrahemispheric fiber tracts. There were no significant associations with clinical recovery. Our results indicate that impact of subcortical lesions extends to homologous brain areas via transcallosal diaschisis.

No comments:

Post a Comment