Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, September 8, 2021

Changes in brain morphometry after motor rehabilitation in chronic stroke

 No clue.

mor·phom·e·try
/môrˈfämətrē/
noun
the process of measuring the external shape and dimensions of landforms, living organisms, or other objects.

Changes in brain morphometry after motor rehabilitation in chronic stroke/span>

Received 15 Mar 2021, Accepted 11 Aug 2021, Published online: 02 Sep 2021
 

Purpose

Recent studies have revealed structural changes after motor rehabilitation, but its morphological changes related to upper limb motor behaviours have not been studied exhaustively. Therefore, we aimed to map the grey matter (GM) changes associated with motor rehabilitation after stroke using voxel-based morphometry (VBM), deformation-based morphometry (DBM), and surface-based morphometry (SBM).

Methods

Forty-one patients with chronic stroke received twelve sessions of low-frequency repetitive transcranial magnetic stimulation plus intensive occupational therapy. MRI data were obtained before and after the intervention. Fugl-Meyer Assessment and Wolf Motor Function Test-Functional Ability Scale were assessed at the two-time points. We performed VBM, DBM, and SBM analyses using T1-weighted images. A correlation analysis was performed between cortical thickness in motor areas and clinical outcomes.

Results

Clinical outcomes significantly improved after the intervention. VBM showed significant GM volume changes in ipsilesional and contralesional primary motor regions. DBM results demonstrated GM changes contralesionally and ipsilesionally after the intervention. SBM results showed significant cortical thickness changes in posterior visuomotor coordination, precentral, postcentral gyri of the ipsilesional hemisphere and contralesional visuomotor area after the intervention. A combination of threshold p < .05, False Discovery Rate and p < .001 (uncorrected) were considered significant. In addition, cortical thickness changes of the ipsilesional motor areas were significantly correlated with the clinical outcome changes.

Conclusions

We found GM structural changes in areas involved in motor, visuomotor and somatosensory functions after the intervention. Furthermore, our findings suggest that structural plasticity changes in chronic stroke could occur in the ipsilesional and contralesional hemispheres after motor rehabilitation.

 

No comments:

Post a Comment