Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, September 9, 2021

Clinicians’ perceptions of a potential wearable device for capturing upper limb activity post-stroke: a qualitative focus group study

 Who the fuck gives a crap about 'perceptions'? Does it deliver objective measurements that can be used to identify the protocols needed to 100% recover? Do you people not understand the only point of stroke research? 100% recovery! This doesn't get us there.

Clinicians’ perceptions of a potential wearable device for capturing upper limb activity post-stroke: a qualitative focus group study

Abstract

Background

There is growing interest in the use of wearable devices that track upper limb activity after stroke to help determine and motivate the optimal dose of upper limb practice. The purpose of this study was to explore clinicians’ perceptions of a prospective wearable device that captures upper limb activity to assist in the design of devices for use in rehabilitation practice.

Methods

Four focus groups with 18 clinicians (occupational and physical therapists with stroke practice experience from a hospital or private practice setting) were conducted. Data were analyzed thematically.

Results

Our analysis revealed three themes: (1) “Quantity and quality is ideal” emphasized how an ideal device would capture both quantity and quality of movement; (2) “Most useful outside therapy sessions” described how therapists foresaw using the device outside of therapy sessions to monitor homework adherence, provide self-monitoring of use, motivate greater use and provide biofeedback on movement quality; (3) “User-friendly please” advocated for the creation of a device that was easy to use and customizable, which reflected the client-centered nature of their treatment.

Conclusions

Findings from this study suggest that clinicians support the development of wearable devices that capture upper limb activity outside of therapy for individuals with some reach to grasp ability. Devices that are easy to use and capture both quality and quantity may result in greater uptake in the clinical setting. Future studies examining acceptability of wearable devices for tracking upper limb activity from the perspective of individuals with stroke are needed.

Background

The majority of individuals who have a stroke experience upper limb impairment [1] and many of these individuals will have persistent difficulties using their limb in daily activities [2]. Animal studies suggest thousands of challenging repetitions are necessary to drive functional recovery [3]. Although the optimal dose of upper limb repetitions in humans is largely unknown, studies suggest that greater amount of movement repetitions of the upper limb are associated with greater functional improvements [4]. This is in contrast to the typical doses of movement practice during stroke rehabilitation which are low and do not come close to those obtained in animal studies that demonstrate significant recovery [5]. In addition, functional improvements made during rehabilitation do not always translate into greater use of the limb in daily life [6]. This is also of concern as decreased use in daily life could jeopardize the functional gains made during costly rehabilitation hospital stays and hamper any future functional recovery.

Wearable technology that monitors and provides feedback on how much the upper limb is moving may help determine a more specific relationship between number of repetitions and recovery and may also motivate individuals to achieve higher levels of movement repetitions. A growing interest in wearable systems that monitor upper limb movement post-stroke has already resulted in multiple review papers describing these technologies and summarizing their research 7,8,9]. The authors of these review papers agree there is a potential for technologies to make a positive contribution in the field of upper limb rehabilitation post-stroke however they also recognize challenges exist to their clinical use. Although the authors provide some nice suggestions to increase the clinical utility and uptake of these technologies, it is also important to understand the needs and views of clinicians to either inform the development of new technologies or to increase adoption of existing technology. Indeed, a user-centered design approach is optimal for obtaining relevant information that could inform the design process and/or potentially impact future knowledge translation activities [10]. Three qualitative or survey-based studies have previously examined healthcare providers’ perceptions of specific upper limb technologies used following stroke such as robotic wearable devices, functional electrical stimulation and virtual reality 11,12,13]. Although these studies revealed important considerations for the design of upper limb technology in stroke rehabilitation in general, none of these studies specifically examined perceptions of wearable devices for the purpose of tracking upper limb activity. Thus, the purpose of this study was to understand clinician perceptions of a potential wearable device for capturing upper limb activity following stroke and its use within rehabilitation practice.

 

No comments:

Post a Comment