Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, April 24, 2011

Clinical Trial of Cell Therapy for Stroke Disability

I'm not sure I like harvesting my bone marrow and injections directly into my brain give me the queasies.
But it does seem to be for chronic patients which I like.

http://www.disabled-world.com/medical/clinical-trials/stroke-disability.php#ixzz1KTCtDvvR

The Stanford University School of Medicine and SanBio Inc. today announced the initiation of a Phase 1/2a clinical trial testing the safety and efficacy of a novel allogeneic cell therapy product, SB623, on patients suffering from stable deficits resulting from previous stroke injuries. For details regarding this clinical trial, please refer to the Clinicaltials.gov website http://www.clinicaltrials.gov/ct2/show/NCT01287936.
It is still recruiting patients so if you are interested, contact them.

SB623 is derived from adult bone marrow and has shown safety and efficacy in rodent models of stroke disability. "SB623 represents a significant step forward in the development of regenerative therapies for the treatment of brain injury," said Keita Mori, SanBio CEO. "We are pleased to initiate a first-in-man study of SB623."

SB623 will be administered by intracranial injection into the damaged region of the brains of patients who have suffered an ischemic stroke. Product safety is the primary focus of the study but various measurements of efficacy will also be tested.

"This is a completely new approach to therapy for stroke victims," said Dr. Gary Steinberg, the Lacroute-Hearst Professor, Chairman of the Department of Neurosurgery, and Director of the Stanford Institute for Neuro-Innovation and Translational Neurosciences at the Stanford University School of Medicine, and Principal Investigator of the study. Sub-Investigator Dr. Neil Schwartz, Clinical Assistant Professor of Neurology, Stanford Stroke Center, said, "If successful, this cell therapy offers hope to otherwise permanently disabled patients."

About SB623: SB623 is a proprietary regenerative cell therapy consisting of cells derived from genetically engineered bone marrow stromal cells obtained from healthy adult donors. SB623 is implanted directly adjacent to the area damaged by stroke and functions by producing proteins that aid the healing process.

About SanBio: SanBio is a privately held San Francisco Bay Area biotechnology company focused on the discovery and development of new regenerative cell therapy products.

About Stanford: Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics, and Lucile Packard Children's Hospital. For more information, please visit the Office of Communication & Public Affairs site at http://mednews.stanford.edu/.

For more information: www.san-bio.com

I do have some serious questions about injecting them next to the lesioned area. That area might have compromised blood supply and if it gets to the lesion itself it won't have a blood supply at all. How did they get around this problem? Have they tested if the injected cells even survive? Testing for non-impact could be a sucess if the cells die but don't cause problems as they die.

No comments:

Post a Comment