Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, October 8, 2011

Scientists turns liver cells directly into neurons with new technique

Very interesting.
http://medicalxpress.com/news/2011-10-scientists-liver-cells-neurons-technique.html
Fully mature liver cells from laboratory mice have been transformed directly into functional neurons by researchers at the Stanford University School of Medicine. The switch was accomplished with the introduction of just three genes and did not require the cells to first enter a pluripotent state. It is the first time that cells have been shown to leapfrog from one fundamentally different tissue type to another.

The accomplishment extends previous research by the same group, which showed in 2009 that it is possible to directly transform , or , into .

“These liver cells unambiguously cross tissue-type boundaries to become fully functional neural cells,” said Marius Wernig, MD, PhD assistant professor of pathology and a member of Stanford’s Institute for Stem Cell Biology and Regenerative Medicine. “Even more surprising, these cells also simultaneously silence their liver-gene expression profile. They are not hybrids; they are completely switching their identities.”

The cells make the change without first becoming a pluripotent type of stem cell — a step long thought to be required for cells to acquire new identities.

Wernig is the senior author of the research, published online Sept. 29 in Cell Stem Cell. Postdoctoral scholar Samuele Marro, PhD, is the first author of the study.

The researchers used a technique developed by Stanford bioengineer Stephen Quake, PhD, to analyze the gene expression profiles of individual hepatocytes (liver cells) and fibroblasts to show that both types of transformed cells not only begin looking and acting like true neurons, they also decisively shut down nearly all gene expression associated with their former, very different identities.

“This is fascinating,” said Wernig. “We can imagine ways that the three introduced factors could stimulate neural gene expression, but how do they also down-regulate two completely unrelated donor networks — those of skin and liver cells?”

Understanding how this down-regulation works will help scientists and clinicians determine whether these so-called transdifferentiated cells can be used to learn more about diseases or even be safely used in human therapy. It would not be good, for example, if newly derived neurons began to again express skin or liver proteins. It also may help researchers understand the process of development, during which cells commit to certain fates while also turning off other potential pathways.

No comments:

Post a Comment