Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:

Tuesday, February 11, 2014

Functional Electrical Stimulation to Augment Poststroke Reach and Hand Opening in the Presence of Voluntary Effort

Isn't this precisely what Bioness would have needed to provide to prove that its orthotic worked and thus could be prescribed and paid for?

A Pilot Study

  1. Nathaniel S. Makowski, PhD1,2
  2. Jayme S. Knutson, PhD1,2,3
  3. John Chae, MD1,2,3
  4. Patrick E. Crago, PhD1,2
  1. 1Case Western Reserve University, Cleveland, OH, USA
  2. 2Cleveland Functional Electrical Stimulation Center, Cleveland, OH, USA
  3. 3MetroHealth Medical Center, Cleveland, OH, USA
  1. Nathaniel Makowski, 2071 Martin Luther King Jr Blvd, Cleveland, OH 44106, USA. Email:


Background. Hemiparesis after stroke can severely limit an individual’s ability to perform activities of daily living. Functional electrical stimulation (FES) has the potential to generate functional arm and hand movements. We have observed that FES can produce functional hand opening when a stroke patient is relaxed, but the FES-produced hand opening is often overpowered by finger flexor coactivation in response to patient attempts to reach and open the hand. Objective. To determine if stimulating both reaching muscles and hand opening muscles makes it possible to achieve useful amounts of simultaneous reach and hand opening even in the presence of submaximal reaching effort. Methods. We measured reach and hand opening during a reach-then-open the hand task under different combinations of voluntary effort and FES for both reach and hand opening. Results. As effort was reduced and stimulation generated more movement, a greater amount of reach and hand opening was achieved. For the first time, this study quantified the effect of voluntary effort for reach and hand opening on stimulated hand opening. It also showed variability in the interaction of voluntary effort and stimulation between participants. Additionally, when participants were instructed to reach with partial effort during simultaneous FES, they achieved greater reach and hand opening. Conclusions. Simultaneous reaching and FES hand opening is improved by including FES for reach and reducing voluntary effort. In the future, an upper extremity neuroprosthesis that uses a combination of voluntary effort and FES assistance may enable users to perform activities of daily living.

No comments:

Post a Comment