Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Saturday, February 22, 2014

Stanford marshmallow experiment

Where's the great stroke association or graduate student that will followup with these people to see if any of them had a stroke and their resilience and recovery? This I bet would map to the Mindset book,
Fixed mindset vs, growth mindset, which would also make a great graduate study, did those who delayed gratification have a growth mindset.
This link does try to sell you stuff.
http://www.life-enhancement.com/magazine/article/3050-would-you-like-to-enjoy-life-more?
T he Stanford marshmallow experiment explores the two different types of people in the world: (1) those who plan and think ahead and are able to delay immediate gratification if there is a substantially larger reward later and (2) those who grab a small reward at once (impatient decision making) rather than wait for a larger reward later. The way children as experimental subjects responded to an offered immediate reward (one marshmallow) as compared to a larger but delayed reward (two marshmallows) in the Stanford marshmallow experiment was significantly associated with very important outcomes in life such as educational attainment, income, SAT scores, body mass index, and other measures of general success in life.
The Marshmallow Experiment
The study took place in the late 60’s and early 1970’s, led by Walter Mischel, who was at that time a professor of psychology at Stanford University.A1 Children (4–6 years old) were left with a marshmallow and told that if they didn’t eat the marshmallow and waited for the experimenter to return in about 15 minutes, they would get two marshmallows (the original one plus another). The simple choice was between a small reward immediately (if the child ate the marshmallow before the experimenter returned) or a greater reward if the child waited for 15 minutes. Of 600 children that participated in the experiments, a minority ate the marshmallow immediately and of those that tried to wait for the fifteen minutes, one third of them succeeded in getting the second marshmallow. It was reported that age had a lot to do with the ability to wait for the larger reward.
The Difference Between Those Who Waited And Those Who Didn’t
J. Adam Fenster / University of Rochester
A follow-up study in 1988C reported that, “preschool children who delayed gratification longer in the self-imposed delay paradigm, were described more than 10 years later by their parents as adolescents who were significantly more competent.” The second follow-up in 1990 reported that delayed gratification was associated with higher SAT scores. Especially interesting was the result of a 2011 brain imaging study of a sample from the original child research subjects (now in middle age), which found that those who had delayed gratification longer had more activity in the prefrontal cortex (importantly involved in executive functions such as planning). Scientists know far more about the brain mechanisms involved in delaying gratification now than they did when these experiments were done. Interestingly, an important enzyme that degrades dopamine, a major constituent of the brain’s reward and reward seeking systems is involved and people with different versions of the gene encoding the enzyme have been identified to differ in their ability to delay gratification. Moreover, food components that can alter the function of the enzyme specified by that gene have also been identified, that have been shown to increase the ability to defer gratification.

No comments:

Post a Comment