Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Tuesday, August 1, 2017

A soft robotic exosuit improves walking in patients after stroke

How many decades before this gets to your hospital? But would it correct the spastic turning outward of the foot like I have? Followup research on exact diagnosis needed for this to help will probably never occur.
http://stm.sciencemag.org/content/9/400/eaai9084
+ See all authors and affiliations
Science Translational Medicine  26 Jul 2017:
Vol. 9, Issue 400, eaai9084
DOI: 10.1126/scitranslmed.aai9084
You are currently viewing the abstract.
View Full Text

A softer recovery after stroke

Passive assistance devices such as canes and braces are often used by people after stroke, but mobility remains limited for some patients. Awad et al. studied the effects of active assistance (delivery of supportive force) during walking in nine patients in the chronic phase of stroke recovery. A soft robotic exosuit worn on the partially paralyzed lower limb reduced interlimb propulsion asymmetry, increased ankle dorsiflexion, and reduced the energy required to walk when powered on during treadmill and overground walking tests. The exosuit could be adjusted to deliver supportive force during the early or late phase of the gait cycle depending on the patient’s needs. Although long-term therapeutic studies are necessary, the immediate improvement in walking performance observed using the powered exosuit makes this a promising approach for neurorehabilitation.

Abstract

Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite—and perhaps because of—their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb’s residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer’s paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle’s swing phase dorsiflexion and 11 ± 3% increase in the paretic limb’s generation of forward propulsion (P < 0.05). These improvements in paretic limb function contributed to a 20 ± 4% reduction in forward propulsion interlimb asymmetry and a 10 ± 3% reduction in the energy cost of walking, which is equivalent to a 32 ± 9% reduction in the metabolic burden associated with poststroke walking. Relatively low assistance (~12% of biological torques) delivered with a lightweight and nonrestrictive exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke.

1 comment:

  1. It will help the spastic turning out of your foot. The position of the cables can be manipulated to match the needs of individual patients!

    ReplyDelete