Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, August 26, 2017

Relationship of cerebral microbleeds to inflammatory marker levels

I got nothing out of this article. What problems does this cause? What solutions there are to prevent them? What interventions are needed to resolve the problems caused?
http://nnjournal.net/article/view/1904

1Department of Neurology, Tianjin 5th Center Hospital, Tianjin 300450, China.
2Department of Neurosurgery, Tianjin 5th Center Hospital, Tianjin 300450, China.
3Department of Neurology, Peking University First Hospital, Beijing 100034, China.
Correspondence Address: Dr. Chen Li, Department of Neurology, Tianjin 5th Center Hospital, 41 Zhejiang Road, Tanggu, Tianjin 300450, China. 
E-mail: lichenokk@163.com
Dr. Chen Li works in Department of Neurology, Tianjin 5th Center Hospital. She graduated from Tianjin Medical University and got her Master of Medicine in July 2011, and she is skilled in the diagnosis and treatment of cerebrovascular diseases, neuroimmune diseases and anxiety-depression diseases. She enjoys reading and writing as well as looking after her daughter.
Dr. Chen Li works in Department of Neurology, Tianjin 5th Center Hospital. She graduated from Tianjin Medical University and got her Master of Medicine in July 2011, and she is skilled in the diagnosis and treatment of cerebrovascular diseases, neuroimmune diseases and anxiety-depression diseases. She enjoys reading and writing as well as looking after her daughter.
Click here to view
DOI:10.20517/2347-8659.2017.05
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/), which allows others to remix, tweak and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
How to cite this article:
Lu QL, Li C, Song Y, Wang L, Jia ZR. Relation of cerebral microbleeds to inflammatory marker levels. Neuroimmunol Neuroinflammation 2017;4:145-51.

Abstract

Aim: The purpose of this study is to investigate the incidence, distribution and risk factors of cerebral microbleeds (CMBs) and the relation between CMBs and inflammation in ischemic cerebrovascular disease.  
Methods: Two hundred and one patients without acute infarction or transient ischemic attack were enrolled. The presence and number of CMB were assessed on susceptibility-weighted imaging. The traditional risk factors of CMB were recorded. Levels of high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9) were tested. Logistic regression analyses were used for multiple-factor analysis of risk factors of CMB.  
Results: Of the 201 patients, 49 (24.38%) had CMB. Multivariate logistic regression analyses showed that the age, the prevalence of hypertension, silent lacunar infarction, white matter lesion, Montreal Cognitive Assessment Score, the using rate of antithrombotic drugs and levels of hs-CRP, IL-6, MMP-9 were the risk factors for CMB. After adjustments for traditional risk factors, inflammatory marker levels remained to be associated with CMBs. The adjusted odd ratios of hs-CRP, IL-6 and MMP-9 were 1.745 (1.342-2.270), 1.223 (1.018-1.533) and 1.284 (1.082-1.423), respectively. Furthermore, inflammatory marker levels were the risk factor for deep or infratentorial CMBs and lobar CMBs.  
Conclusion: The age, prevalence of hypertension, silent lacunar infarction, white matter lesion, MoCA Score, the using rate of antithrombotic drugs and serum hs-CRP, IL-6, and MMP-9 levels were the independent risk factors for CMBs.

No comments:

Post a Comment