Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, August 26, 2017

Peptide-Based Scaffolds Support Human Cortical Progenitor Graft Integration to Reduce Atrophy and Promote Functional Repair in a Model of Stroke

Hoping for the moon shot to come thru rather that working on the thousands of clinical research projects already hinting at success in recovery.  All because stroke is following NO strategy.
http://www.cell.com/cell-reports/pdf/S2211-1247(17)31062-8.pdf
Authors Fahad A. Somaa, Ting-Yi Wang, Jonathan C. Niclis, ..., David R. Nisbet, Lachlan H. Thompson, Clare L. Parish Correspondencelachlan.thompson@florey.edu.au (L.H.T.), clare.parish@florey.edu.au (C.L.P.)
SUMMARY Stem cell transplants offer significant hope for brain repair following ischemic damage. Pre-clinical work suggests that therapeutic mechanisms may be multi-faceted, incorporating bone-fide circuit reconstruction by transplanted neurons, but also protection/regeneration of host circuitry. Here, we engineered hydrogel scaffolds to form ‘‘bio-bridges’’ within the necrotic lesion cavity, providing physical and trophic support to transplanted human embryonic stem cell-derived cortical progenitors, as well as residual host neurons. Scaffolds were fabricated by the self-assembly of peptides for alaminin-derived epitope (IKVAV), thereby mimicking the brain’s major extracellular protein. Following focal ischemia in rats, scaffold-supported cell transplants induced progressive motor improvements over 9 months, compared to cell- or scaffold-only implants. These grafts were larger, exhibited greater neuronal differentiation, and showed enhanced electrophysiological properties reflective of mature, integrated neurons. Varying graft timing post-injury enabled us to attribute repair to both neuroprotection and circuit replacement. These findings highlight strategies to improve the efficiency of stem cell grafts for brain repair.  

No comments:

Post a Comment