Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, August 23, 2017

S182 Introduction to neuroplasticity and its application in neurorehabilitation

I bet nothing in this article helps you make neuroplasticity repeatable by following exact protocols. 
http://www.clinph-journal.com/article/S1388-2457(17)30679-X/fulltext
Cairo University, Department of Neurophysiology, Cairo, Egypt
Neuroplasticity is defined as the property of the brain to adapt to environmental pressures, experiences, and challenges including brain damage. It is a lifelong capacity of the brain to change and rewire itself in response to the stimulation of learning and experience. Based upon this input, several conclusions were recently appearing on the surface. First, there appears to be tremendous latent plasticity even in the adult brain. Second, the brain should be thought of, not as a hierarchy of organized autonomous modules, each of which delivers its output to the next level, but as a set of complex interacting networks that are in a state of dynamic equilibrium with the brain’s environment. Both principles can be potentially exploited in a clinical context to facilitate recovery of function. Promoting neuroplasticity in an enriched environment will eventually result in dendritic branching, synapses, glial processes, brain weight, and cortical thickness. Currently, it is believed that activity drives reorganization of cerebral networks, which is paralleled by functional improvements in cases of acquired brain injuries that are usually in need of intense rehabilitation programs. Numeral studies have demonstrated reorganization of brain activity pattern in response to intense training of motor and cognitive tasks and imagination of movements. For instance, promising results were shown using feedback techniques, like mirror visual feedback (MVF) improving chronic regional pain syndrome and hemiparesis following stroke. Evidence based therapeutic interventions using neuroplasticity as its base include aerobic exercise, bilateral arm training, constraint induced movement therapy,body weight supported treadmill training, mirror therapy, action observation, motor imagery/mental practice, functional electrical stimulation and music therapy.Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were also identified, along with arousing questions involving more updated ways to use neuroplasticity in improving quality of life in cases of human disability.

To access this article, please choose from the options below

Purchase access to this article

Claim Access

If you are a current subscriber with Society Membership or an Account Number, claim your access now.

Subscribe to this title

Purchase a subscription to gain access to this and all other articles in this journal.

Institutional Access

Visit ScienceDirect to see if you have access via your institution.

No comments:

Post a Comment