Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Wednesday, September 20, 2017

The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study

Once again NO protocols.  You are on your own again to find this out.
http://www.strokejournal.org/article/S1052-3057(17)30437-8/fulltext
,
,
,
,
Universality of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive training that is needed to trigger neuroplasticity following a stroke. However, the lack of fully adaptive assist-as-needed control of the robotic devices and an inadequate immersive virtual environment that can promote active participation during training are obstacles hindering the achievement of better training results with fewer training sessions required. This study thus focuses on these research gaps by combining these 2 key components into a rehabilitation system, with special attention on the rehabilitation of fine hand motion skills. The effectiveness of the proposed system is tested by conducting clinical trials on a chronic stroke patient and verified through clinical evaluation methods by measuring the key kinematic features such as active range of motion (ROM), finger strength, and velocity. By comparing the pretraining and post-training results, the study demonstrates that the proposed method can further enhance the effectiveness of fine hand motion rehabilitation training by improving finger ROM, strength, and coordination.

To access this article, please choose from the options below

Purchase access to this article

Claim Access

If you are a current subscriber with Society Membership or an Account Number, claim your access now.

Subscribe to this title

Purchase a subscription to gain access to this and all other articles in this journal.

Institutional Access

Visit ScienceDirect to see if you have access via your institution.

No comments:

Post a Comment