Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, July 5, 2018

The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review

Well fuck, followup will be needed and never occur so we will never know how much error augmentation is needed for the best recovery.  It will take decades before your therapists give up on the practice makes perfect mindset.
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-018-0408-5
Journal of NeuroEngineering and Rehabilitation201815:65
Received: 18 October 2017
Accepted: 19 June 2018
Published: 4 July 2018

Abstract

Despite upper extremity function playing a crucial role in maintaining one’s independence in activities of daily living, upper extremity impairments remain one of the most prevalent post-stroke deficits. To enhance the upper extremity motor recovery and performance among stroke survivors, two training paradigms in the fields of robotics therapy involving modifying haptic feedback were proposed: the error-augmentation (EA) and error-reduction (ER) paradigms. There is a lack of consensus, however, as to which of the two paradigms yields superior training effects. This systematic review aimed to determine (i) whether EA is more effective than conventional repetitive practice; (ii) whether ER is more effective than conventional repetitive practice and; (iii) whether EA is more effective than ER in improving post-stroke upper extremity motor recovery and performance. The study search and selection process as well as the ratings of methodological quality of the articles were conducted by two authors separately, and the results were then compared and discussed among the two reviewers. Findings were analyzed and synthesized using the level of evidence. By August 1st 2017, 269 articles were found after searching 6 databases, and 13 were selected based on criteria such as sample size, type of participants recruited, type of interventions used, etc. Results suggest, with a moderate level of evidence, that EA is overall more effective than conventional repetitive practice (motor recovery and performance) and ER (motor performance only), while ER appears to be no more effective than conventional repetitive practice. However, intervention effects as measured using clinical outcomes were under most instance not ‘clinically meaningful’ and effect sizes were modest. While stronger evidence is required to further support the efficacy of error modification therapies, the influence of factors related to the delivery of the intervention (such as intensity, duration) and personal factors (such as stroke severity and time of stroke onset) deserves further investigations as well.

Background

Stroke, also referred to as cerebrovascular accident (CVA), is one of the leading causes of disablement among adults [1, 2]. It is estimated that stroke costs the Canadian, United States and United Kingdom economy around $3.6 billion [3], $34 billion [4] and £9 billion [5] a year respectively in medical services, personal care and lost productivity. The disabilities resulting from stroke can affect all aspects of life including gross and fine motor ability, walking, activities of daily living (ADLs), speech and cognition [6]. Motor impairments are some of the most prevalent issues post stroke and restoring upper extremity function is one of the top priorities of people with stroke [7]. Compared to the lower extremity impairments, the upper extremity impairments are more likely to result in activities limitations (see International Classification of Functioning, Disability and Health (ICF) in Appendix 1) because tasks that involve the arm and hand often require a high level of fine motor control [8]. In fact, severe upper extremity impairments post-stroke often hinder the ability to take care for oneself and perform ADLs [9]. Although restoration of upper extremity motor functions is crucial for stroke patients to regain their independence, studies have shown that only 35 to 70% of people with stroke recover to the level of arm ability that is considered functional [10, 11, 12] while more than 50% have persistent upper extremity impairments [13].
Studies in both human and animal models demonstrate the importance of motor learning in the process of motor recovery following an acquired brain lesion as both learning and recovery processes can induce cortical changes and reorganization [14]. Motor learning, which is “a set of processes associated with practice or experience that leads to relatively permanent changes in the ability to produce skilled action” [15], relies on an experience-dependent neural plasticity that is modulated by various factors such as task specificity, repetition, intensity, timing, salience, etc. [16]. Amongst different factors influencing the acquisition of motor skills, feedback is believed to be one of the key factors [15]. Feedback is the information that an individual receives as a result of his or her performance [17]. It can be either intrinsic or extrinsic, where intrinsic feedback is that experienced by the performer (e.g. sensory, visual feedback, etc.) and extrinsic (augmented) feedback is that provided by an external source, such as a therapist providing verbal or physical guidance [18, 19]. Extrinsic feedback can inform the performer about a success or failure on a task (knowledge of results) or about the quality of movement or task performance (knowledge of performance) [15].
Robotics is one of the advanced technologies that is increasingly used in post-stroke upper extremity rehabilitation [20]. Compared to conventional approaches, it offers the advantages of high convenience when providing task-oriented practice, as well as high accuracy in measuring outcomes of motor performance (e.g. trajectory straightness, movement speed, range of joint movement [21]). The latter outcomes can in turn be used to provide knowledge of performance as a source of feedback [22]. Two main paradigms of training on the use of feedback, arising from the literature on robotics, were proposed and tested as means to facilitate motor learning and improve motor performance: the error reduction (ER) paradigm and error augmentation (EA) paradigm. The ER paradigm, also known as haptic guidance, is to reduce the performance errors of a subject during a motor task [23], namely via the assistance provided by a robot so that the performer can stay within the optimal movement trajectory determined by the non-paretic arm or by the therapist [24]. This approach is based on the hypothesis that by demonstrating the correct movement trajectory to a person, he/she will be able to learn it by imitation [25]. The discovery of “mirror neurons” that were first identified using microelectrode recordings of single neurons in area F5 of monkey premotor cortex [26] prompted the researchers to believe that a similar mirror neuron system exists in humans, and that this mirror neuron system could play an important role in learning through imitation [27]. Furthermore, the theory of reinforcement-based learning suggests that positive/successful feedback is essential for motor learning to occur [28]. The ER paradigm also assumes that there is a unique optimal movement trajectory and any deviation from it is considered to be an error. According to the principle of abundance and the theory of use-dependent learning, however, having variance in how a motor action is performed does not necessarily impede the overall motor performance [29, 30].
A whole body of literature also suggests that motor learning can be an error driven process, a postulate that can be explained and supported by motor control theories such as the internal model theory [31] and the equilibrium point hypothesis [32]. In the internal model theory, it is hypothesized that subjects form an ‘internal model’ based on their anticipation of the effects of the environment on their motor actions, therefore the internal model acts as a feed-forward component of the motor control [31]. The detection of errors that occur during the motor performance play the role of a feedback component, as errors prompt the existing internal model to adapt in order to reduce errors [33, 34, 35, 36]. In the equilibrium point hypothesis, the errors occur in the subsequent movements following a change in the environment, but the motor system is able to correct these errors by adjusting the control variables based on information about the current motor system, joint positioning of the limbs, etc., thus resetting the activation thresholds (λ) of muscle and forming a new equilibrium point [32, 37]. Given the role of errors in motor learning, it was hypothesized that artificially increasing the performance error would cause learning to occur more quickly [25], an idea that is the foundation of the EA paradigm. In robotics, one of the commonly used technique to artificially increase performance error is to create a force-field that disturbs the limb motion during the movement [38].
While the theories and ideas that support ER vs. EA paradigms are distinct, both are currently being used, primarily in the form of haptic feedback, as part of clinical intervention studies for populations with deficits in motor recovery. Until this day, there is no consensus as to which of the two paradigms provides superior treatment effects in upper extremity motor recovery and performance among stroke survivors. Furthermore, while systematic reviews on the use of error modification in upper extremity rehabilitation after stroke were published in the recent years [39, 40], these exclusively focused on the EA paradigm and did not allow for a comparison between the two approaches. In this study, we conducted a systematic review on the use of EA and ER paradigms in the form of haptic feedback to enhance upper extremity motor recovery and performance in stroke survivors. The main research questions that were addressed are listed in PICO format (Population, Intervention, Comparison, and Outcome) and read as follows:
  1. 1.
    Among stroke survivors (P), to which extent do interventions involving EA paradigm (I1) or ER paradigm (I2) compared to interventions without error modification (C) enhance the upper extremity motor recovery and performance respectively (O).
     
  2. 2.
    Among stroke survivors (P), to which extent does the EA paradigm (I) compared to ER paradigm (C) enhance the upper extremity motor recovery and performance (O).
     
For the purpose of clarification, the comparison component of the first research question, “training without error modification,” refers to standard repetitive practice that does not involve any external force (reducing or amplifying errors) that provides feedback on the performance. The outcomes of both research questions, “upper extremity motor recovery and performance,” can include clinical measures of both upper extremity impairment and disability and kinematic measures of motor performance (for more details, refer to the section of inclusion and exclusion criteria).

No comments:

Post a Comment