Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, July 23, 2018

Recovery of kinematic arm function in well-performing people with subacute stroke: a longitudinal cohort study

Whatever the hell kinematics means. Useless, an analysis of the problem but NOTHING to recover from that problem.
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-018-0409-4
Journal of NeuroEngineering and Rehabilitation201815
:67
©  The Author(s). 2018
  • Received: 17 January 2018
  • 29 June 2018




  • 18 July 2018






  • Abstract

    Background

    Most motor function improvements in people who have experienced strokes occur within the first 3 months. However, individuals showing complete or nearly complete arm function recovery, as assessed using clinical scales, still show certain movement kinematic deficits at 3 months, post-stroke. This study evaluated the changes in upper extremity kinematics, in individuals demonstrating minor clinical motor impairments, 3–12 months post-stroke, and also examined the association between kinematics and the subjects’s self-perceived hand abilities during the chronic stage, 12 months post-stroke.

    Methods

    Forty-two subjects recovering from strokes and having Fugl-Meyer upper extremity motor assessment scores ≥60 were included from the Stroke Arm Longitudinal Study at the University of Gothenburg (SALGOT). Kinematic analyses of a drinking task, performed 3, 6, and 12 months post-stroke, were compared with kinematic analyses performed in 35 healthy controls. The Stroke Impact Scale-Hand domain was evaluated at the 12-month follow-up.

    Results

    There were no significant changes in kinematic performance between 3 and 12 months, post-stroke. The patients recovering from stroke showed lower peak elbow extension velocities, and increased shoulder abduction and trunk displacement during drinking than did healthy controls, at all time points. At 12 months, post-stroke, better self-perceived arm functions correlated with improved trunk displacements, movement times, movement units, and time to peak velocity percentages.

    Conclusion

    Kinematic movement deficits, observed at 3 months post-stroke, remained unchanged at 12 months. Movement kinematics were associated with the patient’s self-perceived ability to use their more affected hand.

    Trial registration

    ClinicalTrials: NCT01115348
    .

    No comments:

    Post a Comment