Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, July 16, 2018

A dual-therapy approach to boost motor recovery after a stroke

Well then write this up in a protocol and get it in the hands of every stroke doctor and hospital in the world. Anything less is pure laziness and incompetence, just writing this up is not enough, steps to get it delivered into proper hands have to be accomplished.  It has been proven many times that stroke staff do not pull information from sources so the push method will need to be tried.  I would be curious if this worked in cases with spasticity. I am assuming that this would do no good for me since most of the motor and pre-motor cortex is dead so no signals could be read.
https://www.sciencedaily.com/releases/2018/06/180620094808.htm

Date:
June 20, 2018
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Scientists have shown that combining a brain-computer interface (BCI) with functional electrical stimulation (FES) can help stroke victims recover greater use of their paralyzed arm -- even years after the stroke.
Share:
FULL STORY

Paralysis of an arm and/or leg is one of the most common effects of a stroke. But thanks to research carried out by scientists at the Defitech Foundation Chair in Brain-Machine Interface, in association with other members of EPFL's Center for Neuroprothetics, the Clinique Romande de Réadaptation in Sion, and the Geneva University Hospitals, stroke victims may soon be able to recover greater use of their paralyzed limbs. The scientists' pioneering approach brings together two known types of therapies -- a brain-computer interface (BCI) and functional electrical stimulation (FES) -- and has been published in Nature Communications.
"The key is to stimulate the nerves of the paralyzed arm precisely when the stroke-affected part of the brain activates to move the limb, even if the patient can't actually carry out the movement. That helps reestablish the link between the two nerve pathways where the signal comes in and goes out," says José del R. Millán, who holds the Defitech Chair at EPFL.
Twenty-seven patients aged 36 to 76 took part in the clinical trial. All had a similar lesion that resulted in moderate to severe arm paralysis following a stroke occurring at least ten months earlier. Half of the patients were treated with the scientists' dual-therapy approach and reported clinically significant improvements. The other half were treated only with FES and served as a control group.
For the first group, the scientists used a BCI system to link the patients' brains to computers using electrodes. That let the scientists pinpoint exactly where the electrical activity occurred in the brain tissue when the patients tried to reach out their hands. Every time that the electrical activity was identified, the system immediately stimulated the arm muscle controlling the corresponding wrist and finger movements. The patients in the second group also had their arm muscles stimulated, but at random times. This control group enabled the scientists to determine how much of the additional motor-function improvement could be attributed to the BCI system.
Reactivated tissue
The scientists noted a significant improvement in arm mobility among patients in the first group after just ten one-hour sessions. When the full round of treatment was completed, some of the first-group patients' scores on the Fugl-Meyer Assessment -- a test used to evaluate motor recovery among patients with post-stroke hemiplegia -- were over twice as high as those of the second group.
"Patients who received the BCI treatment showed more activity in the neural tissue surrounding the affected area. Due to their plasticity, they could help make up for the functioning of the damaged tissue," says Millán.
Electroencephalographies (EEGs) of the patients clearly showed an increase in the number of connections among the motor cortex regions of their damaged brain hemisphere, which corresponded with the increased ease in carrying out the associated movements. What's more, the enhanced motor function didn't seem to diminish with time. Evaluated again 6-12 months later, the patients hadn't lost any of their recovered mobility.

Story Source:
Materials provided by Ecole Polytechnique Fédérale de Lausanne. Original written by Sarah Perrin. Note: Content may be edited for style and length.

Journal Reference:
  1. A. Biasiucci, R. Leeb, I. Iturrate, S. Perdikis, A. Al-Khodairy, T. Corbet, A. Schnider, T. Schmidlin, H. Zhang, M. Bassolino, D. Viceic, P. Vuadens, A. G. Guggisberg, J. d. R. Millán. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications, 2018; 9 (1) DOI: 10.1038/s41467-018-04673-z

No comments:

Post a Comment