Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, January 1, 2019

User-centered practicability analysis of two identification strategies in electrode arrays for FES induced hand motion in early stroke rehabilitation

You can read the 19 pages and see if you get anything useful, I didn't.  Doesn't even seem to be measuring anything on results of hand recovery. What the fuck useless crapola is that?

User-centered practicability analysis of two identification strategies in electrode arrays for FES induced hand motion in early stroke rehabilitation


Christina Salchow-Hömmen 1* , Natalie Jankowski 2 , Markus Valtin 1 , Laura Schönijahn 2 , Sebastian Böttcher 3 , Frank Dähne 3 and Thomas Schauer 1

Abstract 

Background: Surface electrode arrays have become popular in the application of functional electrical stimulation (FES) on the forearm. Arrays consist of multiple, small elements, which can be activated separately or in groups, forming virtual electrodes (VEs). As technology progress yields rising numbers of possible elements, an effective search strategy for suitable VEs in electrode arrays is of increasing importance. Current methods can be time-consuming, lack user integration, and miss an evaluation regarding clinical acceptance and practicability.
Methods: Two array identification procedures with different levels of user integration—a semi-automatic and a fully automatic approach—are evaluated. The semi-automatic method allows health professionals to continuously modify VEs via a touchscreen while the stimulation intensities are automatically controlled to maintain sufficient wrist extension. The automatic approach evaluates stimulation responses of various VEs for different intensities using a cost function and joint-angles recordings. Both procedures are compared in a clinical setup with five sub-acute stroke patients with moderate hand disabilities. The task was to find suitable VEs in two arrays with 59 elements in total to generate hand opening and closing for a grasp-and-release task. Practicability and acceptance by patients and health professionals were investigated using questionnaires and interviews.
Results: Both identification methods yield suitable VEs for hand opening and closing in patients who could tolerate the stimulation. However, the resulting VEs differed for both approaches. The average time for a complete search was 25% faster for the semi-automatic approach (semi-automatic: 7.3min, automatic: 10.5min). User acceptance was high for both methods, while no clear preference could be identified.
Conclusions: The semi-automatic approach should be preferred as the search strategy in arrays on the forearm. The observed faster search duration will further reduce when applying the system repeatedly on a patient as only small position adjustments for VEs are required. However, the setup time will significantly increase for generation of various grasp types and adaptation to different arm postures. We recommend different levels of user integration in FES systems such that the search strategy can be chosen based on the users’ preferences and application scenario.
Keywords: Functional electrical stimulation, Electrode array, Virtual electrodes, Identification, Hand rehabilitation, User-centered design, Stroke

No comments:

Post a Comment