Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, June 15, 2020

Determining Safe Participation in Aerobic Exercise Early After Stroke Through a Graded Submaximal Exercise Test

Only twice did I ever get even minimally exhausted while doing therapy in the hospital. Once on a bike machine where I was chasing a rabbit, the rabbit won, and once on a stepping machine. Of course the hospital never found out my cardiovascular fitness. 3 years post stroke at a physical I had a resting heart rate of 54 at age 53, level of an athlete. My doctor asked what exercises I was doing, 'I've done no exercises for the past 3 years'.

Determining Safe Participation in Aerobic Exercise Early After Stroke Through a Graded Submaximal Exercise Test 

Affiliations


Abstract

Objective: The benefits of aerobic exercise early after stroke are well known, but concerns about cardiovascular risk are a barrier to clinical implementation. Symptom-limited exercise testing with electrocardiography (ECG) is recommended but not always feasible. The purpose of this study was to determine the frequency of and corresponding exercise intensities at which ECG abnormalities occurred during submaximal exercise testing, that would limit safe exercise prescription beyond those intensities.
Methods: This study was a retrospective analysis of ECGs from 195 patients who completed submaximal exercise testing during stroke rehabilitation. A graded submaximal exercise test was conducted with 5- or 12-lead ECG and was terminated on the basis of predetermined endpoint criteria (heart rate, perceived exertion, signs, or symptoms). ECGs were retrospectively reviewed for exercise-induced abnormalities and their associated heart rates.
Results: The peak heart rate achieved was 65.4% (SD = 10.5%) of the predicted maximum heart rate or 29.1% (SD = 15.5%) of the heart rate reserve (adjusted for beta-blocker medications). The test was terminated more often because of perceived exertion (93/195) than because of heart rate limits (60/195). Four patients (2.1%) exhibited exercise-induced horizontal or downsloping ST segment depression of ≥1 mm. Except for 1 patient, the heart rate at test termination was comparable to the heart rate associated with the onset of the ECG abnormality.
Conclusion: A graded submaximal exercise test without ECG but with symptom monitoring and conservative heart rate and perceived exertion endpoints may facilitate safe exercise intensities early after stroke. Symptom-limited exercise testing with ECG is still recommended when progressing to higher-intensity exercise.
Impact: Concerns about cardiovascular risk are a barrier to physical therapists implementing aerobic exercise in stroke rehabilitation. This study showed that, in the absence of access to exercise testing with ECG, submaximal testing with conservative heart rate and perceived exertion endpoints and symptom monitoring can support physical therapists in the safe prescription of aerobic exercise early after stroke.
Keywords: Exercise Therapy; Physical Therapists; Stroke.

No comments:

Post a Comment