Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, June 18, 2020

Intense and unpredictable perturbations during gait training improve dynamic balance abilities in chronic hemiparetic individuals: a randomized controlled pilot trial

Well, with this success then write up a protocol on it and get it distributed to all the

10 million yearly stroke survivors.

Intense and unpredictable perturbations during gait training improve dynamic balance abilities in chronic hemiparetic individuals: a randomized controlled pilot trial


Abstract

Background

Previous studies have assessed the effects of perturbation training on balance after stroke. However, the perturbations were either applied while standing or were small in amplitude during gait, which is not representative of the most common fall conditions. The perturbations were also combined with other challenges such as progressive increases in treadmill speed.

Objective

To determine the benefit of treadmill training with intense and unpredictable perturbations compared to treadmill walking-only training for dynamic balance and gait post-stroke.

Methods

Twenty-one individuals post-stroke with reduced dynamic balance abilities, with or without a history of fall and ability to walk on a treadmill without external support or a walking aid for at least 1 min were allocated to either an unpredictable gait perturbation (Perturb) group or a walking-only (NonPerturb) group through covariate adaptive randomization. Nine training sessions were conducted over 3 weeks. NonPerturb participants only walked on the treadmill but were offered perturbation training after the control intervention. Pre- and post-training evaluations included balance and gait abilities, maximal knee strength, balance confidence and community integration. Six-week phone follow-ups were conducted for balance confidence and community integration. Satisfaction with perturbation training was also assessed.

Results

With no baseline differences between groups (p > 0.075), perturbation training yielded large improvements in most variables in the Perturb (p < 0.05, Effect Size: ES > .46) group (n = 10) and the NonPerturb (p ≤ .089, ES > .45) group (n = 7 post-crossing), except for maximal strength (p > .23) in the NonPerturb group. Walking-only training in the NonPerturb group (n = 8, pre-crossing) mostly had no effect (p > .292, ES < .26), except on balance confidence (p = .063, ES = .46). The effects of the gait training were still present on balance confidence and community integration at follow-up. Satisfaction with the training program was high.

Conclusion

Intense and unpredictable gait perturbations have the potential to be an efficient component of training to improve balance abilities and community integration in individuals with chronic stroke. Retrospective registration: ClinicalTrials.gov. March 18th, 2020. Identifier: NCT04314830.

Background

Post-stroke impairments, particularly those affecting dynamic balance, are responsible for a fall incidence rate as high as 37 to 73% during the first year after stroke [1,2,3]. Dynamic balance can be defined as the ability to achieve, maintain, or restore the line of gravity within the continuously changing base of support [4, 5]. Dynamic balance impairments in individuals post-stroke are due to decreased sensory information and muscular strength on the paretic side, [5] slow gait speed, [6] reduced adaptability to constraints, [7] impaired timing of muscle activation [2] and delayed or disrupted postural responses [8, 9]. Impaired dynamic balance and related falls result in psychological and physical consequences such as reduced socialization and activity, fear of falling and fractures [10].
Effective dynamic balance training post-stroke should include balance perturbations during gait [11, 12]. Non-specific training approaches with mobility exercises improve functional balance and mobility in persons with stroke, [13, 14] but the effects are small [15]. In addition, individuals post-stroke predominantly fall during gait [10] where compensatory strategies that are essential for balance recovery require activation of neural pathways specific to involuntary postural responses [16]. On the other hand, the stepping strategy, i.e. taking a step, or changing its characteristics, to maintain balance, is essential for counteracting unpredictable situations leading to falls while walking in ordinary life [16]. To trigger this strategy, perturbations should be unpredictable and intense enough to be challenging [17].
While gait perturbation training has already been reported as an effective method for reducing fall rates in older adults, [17, 18] there is limited evidence on the effectiveness of perturbation training in individuals post-stroke [19,20,21]. Two recent studies used perturbations in a standing position, which had a limited effect on balance abilities, similar to control, traditional balance training [19, 22]. Another study that used low-amplitude perturbations did not trigger large stepping responses [20]. Lastly, gradual increases in treadmill speed of walking during the training sessions may be a confounder in these studies, [20, 21] given that treadmill gait training is known to improve gait abilities [23] and possibly balance [24, 25]. To determine whether gait perturbations are effective in clinically improving dynamic balance, it is necessary to control for the effect of gait training on gait and balance abilities. In addition, perturbations that occur in daily life vary in intensity and require specific adaptations in stepping reactions or gait pattern. It therefore seems necessary to include medium-to-large perturbations in training programs to challenge gait adaptability in individuals with stroke.
The purpose of this pilot study was therefore to compare the effects of gait training with and without unpredictable perturbations that trigger stepping reactions on dynamic balance and gait abilities in individuals with chronic stroke. We also measured possible sustained improvements in balance confidence and reintegration into the community 6 weeks after the end of each program. We hypothesized that the experimental perturbation training (Perturb) group would improve in dynamic balance, walking speed, balance confidence and muscle strength. These effects would facilitate the transfer of improved balance abilities towards better community integration [20]. The control group (NonPerturb), which would walk on the treadmill without perturbation, would only improve in walking speed, and possibly dynamic balance, but to a lower extent due to the lower-level challenge of the steady treadmill speed throughout the training program [21, 25]. The participants in this group who would cross over to perturbation training once the no-perturbation training was finished, would demonstrate greater improvements in balance and gait abilities during this second training period.


No comments:

Post a Comment