Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, April 12, 2023

Insights into Exosome Transport through the Blood–Brain Barrier and the Potential Therapeutical Applications in Brain Diseases

Your doctor should be vastly interested in this. 

But why go thru all the trouble of stem cells if exosomes are the reason for the benefits? Which must be why no one seems to be monitoring stem cell survival.

Application of stem cell-derived exosomes in ischemic diseases: opportunity and limitations

The latest here:

 Insights into Exosome Transport through the Blood–Brain Barrier and the Potential Therapeutical Applications in Brain Diseases

1
Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
2
Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
3
Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
4
Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
*
Author to whom correspondence should be addressed.
Pharmaceuticals 2023, 16(4), 571; https://doi.org/10.3390/ph16040571
Received: 8 March 2023 / Revised: 31 March 2023 / Accepted: 7 April 2023 / Published: 10 April 2023
(This article belongs to the Section Biopharmaceuticals)

Abstract

Drug delivery to the central nervous system (CNS) is limited due to the presence of the blood–brain barrier (BBB), a selective physiological barrier located at the brain microvessels that regulates the flow of cells, molecules and ions between the blood and the brain. Exosomes are nanosized extracellular vesicles expressed by all cell types and that function as cargos, allowing for communication between the cells. The exosomes were shown to cross or regulate the BBB in healthy and disease conditions. However, the mechanistic pathways by which exosomes cross the BBB have not been fully elucidated yet. In this review, we explore the transport mechanisms of exosomes through the BBB. A large body of evidence suggests that exosome transport through the BBB occurs primarily through transcytosis. The transcytosis mechanisms are influenced by several regulators. Inflammation and metastasis also enhance exosome trafficking across the BBB. We also shed light on the therapeutical applications of exosomes for treating brain diseases. Further investigations are essential to provide clearer insights related to trafficking of exosomes across the BBB and disease treatment.

No comments:

Post a Comment