Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, December 1, 2024

Examining the effectiveness of motor imagery combined with non-invasive brain stimulation for upper limb recovery in stroke patients: a systematic review and meta-analysis of randomized clinical trials

 With absolutely useless research like this, no wonder stroke survivors never recover to 100%! Damn it all, deliver EXACT STROKE RECOVERY PROTOCOLS! That's what survivors want, don't you ever talk to survivors?

Examining the effectiveness of motor imagery combined with non-invasive brain stimulation for upper limb recovery in stroke patients: a systematic review and meta-analysis of randomized clinical trials

Abstract

Background

Transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) are common non-invasive brain stimulation (NIBS) methods for functional recovery after stroke. Motor imagery (MI) can be used in the rehabilitation of limb motor function after stroke, but its effectiveness remains to be rigorously established. Furthermore, there is a growing interest in the combined application of NIBS with MI, yet the evidence regarding its impact on the recovery of upper limb function after stroke is inconclusive. This meta-analysis aimed to demonstrate whether combining the two is superior to NIBS alone or MI alone to provide a reference for clinical decision-making.

Methods

PubMed, EMBASE, Cochrane Library, Web of Science, Science Direct, CNKI, WANFANG, and VIP databases were searched for randomized controlled trials on the effects of MI combined NIBS in motor function recovery after stroke until February 2024. The outcomes of interest were associated with body functions or structure (impairment) and activity (functional). The primary outcome was assessed with the Fugl-Meyer assessment of the upper extremity (FMA-UE) for motor function of the upper limbs and the modified Barthel Index (MBI) for the ability to perform daily living activities. For secondary outcomes, functional activity level was measured using wolf motor function test (WMFT) and action research arm test (ARAT), and cortical excitability was assessed using cortical latency of motor evoked potential (MEP-CL) and central motor conduction time (CMCT). The methodological quality of the selected studies was evaluated using the evidence‑based Cochrane Collaboration’s tool. A meta-analysis was performed to calculate the mean differences (MD) or the standard mean differences (SMD) and 95% confidence intervals (CI) with random-effect models.

Results

A total of 14 articles, including 886 patients, were reviewed in the meta-analysis. In comparison with MI or NIBS alone, the combined therapy significantly improved the motor function of the upper limbs (MD = 5.43; 95% CI 4.34–6.53; P < 0.00001) and the ability to perform activities of daily living (MD = 11.07; 95% CI 6.33–15.80; P < 0.00001). Subgroup analyses showed an interaction between the stage of stroke, the type of MI, and the type of NIBS with the effect of the combination therapy.

Conclusion

The combination of MI and NIBS may be a promising therapeutic approach to enhance upper limb motor function, functional activity, and activities of daily living after stroke.(Nothing is promising if you don't deliver protocols survivors can use! If you can't do that; get the hell out of stroke and into something easier for you!)

Systematic registration

PROSPERO registration CRD42023493073.

More at link.

No comments:

Post a Comment